The Future Space-Based GAMMA-400 Gamma-Ray Telescope for Studying Gamma and Cosmic Rays

N. P. Topchiev^{a, *}, A. M. Galper^{a, b}, I. V. Arkhangelskaja^b, A. I. Arkhangelskiy^{a, b}, A. V. Bakaldin^{a, c},
Yu. V. Gusakov^a, O. D. Dalkarov^a, A. E. Egorov^a, V. G. Zverev^a, A. A. Leonov^{a, b}, P. Yu. Naumov^b,
N. Yu. Pappe^a, M. F. Runtso^b, Yu. I. Stozhkov^a, S. I. Suchkov^a, M. D. Kheimitz^b,
I. V. Chernysheva^{a, b}, and Yu. T. Yurkin^b

^aLebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991 Russia
 ^bNational Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
 ^cScientific Research Institute of System Analysis, Russian Academy of Sciences, Moscow, 117218 Russia
 *e-mail: tnp51@yandex.ru

Received September 15, 2018; revised November 6, 2018; accepted January 28, 2019

Abstract—The future space-based γ -ray telescope GAMMA-400 will be installed on the Navigator platform of the Russian astrophysical observatory. A highly elliptical orbit will allow prolonged (~100 days) continuous observations of many regions of the celestial sphere for 7–10 years. GAMMA-400 will measure fluxes of γ -ray emission in the energy range of ~20 MeV to several TeV and electrons + positrons to ~20 TeV. The γ -ray telescope will have excellent separation of γ -ray emissions against the background of cosmic rays and electrons + positrons from protons, along with unprecedented angular (~0.01° at $E_{\gamma} = 100$ GeV) and energy (~1% at $E_{\gamma} = 100$ GeV) resolutions 5–10 times better than for the Fermi-LAT and ground-based γ -ray telescopes. GAMMA-400 observations will provide fundamentally new data on discrete sources and spectra of γ -ray emissions and electrons + positrons.

DOI: 10.3103/S106287381905037X

INTRODUCTION

Work on the GAMMA-400 γ -ray telescope continues in accordance with Russian Federal Space Program for 2009–2015 and 2016–2025 [1–3]. The GAMMA-400 γ -ray telescope is designed to study high-energy cosmic γ -ray emissions and the electron–positron (below, electron) component of cosmic rays (CRs) in the high-energy range. The resulting data will contribute to determining the nature of the dark matter in the Universe and developing the theory of the origin of high-energy CRs.

Studies of high-energy cosmic γ -ray emissions are now under way both in space (AGILE, Fermi-LAT, CALET, DAMPE), and on the Earth's surface (H.E.S.S., MAGIC, VERITAS, HAWC). The Fermi-LAT telescope has recorded γ -ray emissions with energies of 0.1–100 GeV from ~3000 discrete sources, around one-third of which were not associated with astrophysical objects [4]. Ground-based γ -ray telescopes have recorded γ -ray emissions with energies of more than 100 GeV from only ~200 sources (http://tevcat.uchicago.edu/). Note that the energy spectra of γ -ray emissions in the energy region of around 100 GeV from many sources, recorded both by the Fermi-LAT telescope and ground-based facilities, practically do not overlap. The energy spectra of the fluxes of primary CR electrons obtained with Fermi-LAT, PAMELA, AMS-2, CALET, and DAMPE in the energy range of more than 50 GeV do not coincide [5]. We must therefore develop a new generation space-based telescopes with much better angular and energy resolution for directly recording γ -ray emissions of high and ultrahigh energies and the CR electron component, in order to search for and identify sources, and determine the spectra of γ -ray emissions and the electron component of CRs. The GAMMA-400 telescope, which will be installed at the Russian astrophysical observatory, will be such a unique instrument. GAMMA-400 is a successor to the Fermi-LAT generation of space-based γ -ray telescopes.

THE GAMMA-400 GAMMA-RAY TELESCOPE

Figure 1 shows the physical layout of the GAMMA-400 telescope, which includes

—an upper (AC_{top}) ($1280 \times 1280 \times 20$ mm) and four lateral (AC_{lat}) ($1280 \times 600 \times 20$ mm) double-layer anticoincidence scintillation detectors that ensure efficient (0.99995) detection of charged particles and a time resolution of 300 ps;

Fig. 1. Physical layout of the GAMMA-400 γ -ray telescope: AC_{top}, upper anticoincidence detector; AC_{lat}, lateral anticoincidence detector; C, converter/tracker; S1 (ToF) and S2 (ToF), scintillation detectors of the time-of-flight system; CC1 and CC2, coordinate-sensitive calorimeter; S3 and S4, scintillation detectors; LDC, lateral detectors of the calorimeter.

—a converter/tracker (C) consisting of 13 pairs of planes of silicon strip detectors (X- and Y-coordinates) with a strip pitch of 0.08 mm (it is 0.24 mm for Fermi-LAT) and an analog readout that doubles the accuracy of determining the location of a particle's passage, compared to the binary readout used in Fermi-LAT. Tungsten converters are located on the 11 upper panels: 7 panels 0.1 r.l. thick and 4 panels 0.025 r.l. thick (where r.l. is the unit of radiation length). The total thickness of the converter/tracker for the vertical incidence of particles is ~1 r.l.;

—a time-of-flight system (ToF) of two-layer plastic scintillation detectors S1 ($1000 \times 1000 \times 20$ mm) and S2 ($1000 \times 1000 \times 20$ mm). Detectors S1 and S2 are separated by a distance of ~500 mm; the ToF provides a separation of at least 1000 for events from above and below and has a time resolution of more than 300 ps;

—a coordinate-sensitive calorimeter (CC) with the area of 1000 \times 1000 mm². The CC consists of two parts: CC1 and CC2. (a) CC1 consists of 2 layers. Each layer is a set of scintillation crystals CsI(Tl) and two-layer (with mutually perpendicular strips) silicon strip detectors with a pitch of 0.08 mm. CC1 is 2 r.l. thick; (b) CC2 consists of 28 \times 28 CsI(Tl) crystals. Each crystal with dimensions of 36 \times 36 \times 370 mm is inside a carbon fiber grating 0.4 mm thick. CC2 is ~20 r.l. thick. (c) The total thickness of the calorimeter for normal incidence of particles is ~22 r.l. (8.6 r.l. for Fermi-LAT) or 1.0 i.l. (where i.l. is the length of nuclear interaction). The total thickness of the calorimeter for detecting particles from lateral directions is 54 r.l. or 2.5 i.l.

-two-layer plastic scintillation detectors C3 and C4 of the calorimeter with dimensions of $1000 \times 1000 \times 20$ mm;

-two-layer plastic lateral detectors of the calorimeter (LDC).

Segmentation and time approaches are used to eliminate backscattering particles (mainly photons with \sim 1 MeV) generated by interaction with the calorimeter matter and directed in all directions (including upward, which blocks the AC detector).

GAMMA-400 is able to investigate γ -ray fluxes in the energy range of ~20 MeV to several TeV and fluxes of the CR electron component in the range of several GeV to ~ 20 TeV from both top-down (the GAMMA-400 field of view is $\pm 45^{\circ}$), and four lateral directions with a total geometrical factor of more than 3 m² sr. The γ -ray telescope uses a single trigger, $AC \times S1 \times S2$, to record γ -ray emissions of both high and low energies. Figure 2 shows the dependences of the effective area; the GAMMA-400 angular and energy resolutions, depending on the γ -ray energy; and the dependence of the effective area on the angle of incidence of particles. GAMMA-400 will have unprecedented angular (~0.01° at $E_{\gamma} = 100$ GeV) and energy (~1% at $E_{\gamma} = 100$ GeV) resolutions 5–10 times better than those of Fermi-LAT and ground-based telescopes. The proton rejection factor is $\sim 5 \times 10^5$. When calibrating the calorimeter prototype at the S-25R synchrotron of the Lebedev Physical Institute on a positron beam with an energy of 300 MeV, an energy resolution of 10% was obtained, which corresponds to the results from calculations.

Fig. 2. GAMMA-400 γ -ray telescope performance: (a) Dependence of the effective area on the energy for vertically incident particles; (b) dependence of effective area on the angle of incidence of particles for (1) $E_{\gamma} = 1$ GeV; (2) $E_{\gamma} = 10$ GeV; and (3) $E_{\gamma} = 100$ GeV. (c) Dependence of energy resolution on energy for parts of the converter: (1) from 4 tungsten panels 0.025 r.l. thick; (2) from 7 tungsten panels 0.1 r.l. thick; (d) dependence of angular resolution on energy for (1) GAMMA-400 (pitch, 80 µm; analog readout); (2) Fermi-LAT (pitch, 228 µm; digital readout).

The main mode of GAMMA-400 operation is precision measurements of individual regions of the celestial sphere (e.g., the Galactic center) with continuous observations of up to 100 days in a highly elliptical orbit outside the radiation belts and without shading the γ -ray telescope's field of view of the Earth.

CONCLUSIONS

Compared to the Fermi-LAT telescope, the GAMMA-400 γ -ray telescope will provide several times better angular and energy resolution in the energy range of ~20 MeV to ~1000 GeV and at energies above 10 GeV. The angular resolution for $E_{\gamma} = 100$ GeV is ~0.01°, and the energy resolution is ~1%. The possibility of continuous long-term observation of individual regions of the celestial sphere (e.g., the Galactic center) will allow us to make considerable progress in performing precision studies of discrete γ -ray sources, measuring the energy spectra of Galactic and extragalactic diffuse γ -ray emission, resolving fluxes of γ -ray emissions, and determining the CR electron—positron component, which could be associated with the annihilation or decay of dark matter particles.

REFERENCES

- 1. Galper, A.M., Adriani, O., Aptekar, R.L., et al., *Adv. Space Res.*, 2013, vol. 51, p. 297.
- Topchiev, N., Galper, A.M., Bonvicini, V., et al., J. Phys.: Conf. Ser., 2016, vol. 675, p. 032009.
- Galper, A.M., Suchkov, S.I., Topchiev, N.P., Arkhangelskaja, I.V., Arkhangelskiy, A.I., Bakaldin, A.V., Gusakov, Yu.V., Dalkarov, O.D., Egorov, A.E., Zverev, V.G., Kadilin, V.V., Leonov, A.A., Naumov, P.Yu., Runtso, M.F., Kheymits, M.D., and Yurkin, Yu.T., *Phys. At. Nucl.*, 2017, vol. 80, p. 1141.
- Acero, F., Ackermann, M., Ajello, M., et al., *Astrophys. J. Suppl.*, 2015, vol. 218, p. 23.
- 5. Adriani, O., Akaike, Y., Asano, K., et al., arXiv:1806.09728 [astro-ph.HE].

Translated by N. Topchiev

BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES: PHYSICS Vol. 83 No. 5 2019