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Abstract—The future space-based γ-ray telescope GAMMA-400 will be installed on the Navigator platform
of the Russian astrophysical observatory. A highly elliptical orbit will allow prolonged (~100 days) continuous
observations of many regions of the celestial sphere for 7–10 years. GAMMA-400 will measure f luxes of γ-ray
emission in the energy range of ~20 MeV to several TeV and electrons + positrons to ~20 TeV. The γ-ray tele-
scope will have excellent separation of γ-ray emissions against the background of cosmic rays and electrons +
positrons from protons, along with unprecedented angular (~0.01° at Eγ = 100 GeV) and energy (~1% at
Eγ = 100 GeV) resolutions 5–10 times better than for the Fermi-LAT and ground-based γ-ray telescopes.
GAMMA-400 observations will provide fundamentally new data on discrete sources and spectra of γ-ray
emissions and electrons + positrons.
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INTRODUCTION
Work on the GAMMA-400 γ-ray telescope contin-

ues in accordance with Russian Federal Space Pro-
gram for 2009–2015 and 2016–2025 [1–3]. The
GAMMA-400 γ-ray telescope is designed to study
high-energy cosmic γ-ray emissions and the electron–
positron (below, electron) component of cosmic rays
(CRs) in the high-energy range. The resulting data will
contribute to determining the nature of the dark mat-
ter in the Universe and developing the theory of the
origin of high-energy CRs.

Studies of high-energy cosmic γ-ray emissions are
now under way both in space (AGILE, Fermi-LAT,
CALET, DAMPE), and on the Earth’s surface
(H.E.S.S., MAGIC, VERITAS, HAWC). The Fermi-
LAT telescope has recorded γ-ray emissions with
energies of 0.1–100 GeV from ~3000 discrete sources,
around one-third of which were not associated with
astrophysical objects [4]. Ground-based γ-ray tele-
scopes have recorded γ-ray emissions with energies of
more than 100 GeV from only ~200 sources
(http://tevcat.uchicago.edu/). Note that the energy
spectra of γ-ray emissions in the energy region of
around 100 GeV from many sources, recorded both by
the Fermi-LAT telescope and ground-based facilities,
practically do not overlap. The energy spectra of the

fluxes of primary CR electrons obtained with Fermi-
LAT, PAMELA, AMS-2, CALET, and DAMPE in
the energy range of more than 50 GeV do not coincide
[5]. We must therefore develop a new generation
space-based telescopes with much better angular and
energy resolution for directly recording γ-ray emis-
sions of high and ultrahigh energies and the CR electron
component, in order to search for and identify sources,
and determine the spectra of γ-ray emissions and the
electron component of CRs. The GAMMA-400 tele-
scope, which will be installed at the Russian astro-
physical observatory, will be such a unique instru-
ment. GAMMA-400 is a successor to the Fermi-LAT
generation of space-based γ-ray telescopes.

THE GAMMA-400 
GAMMA-RAY TELESCOPE

Figure 1 shows the physical layout of the
GAMMA-400 telescope, which includes

—an upper (ACtop) (1280 × 1280 × 20 mm) and
four lateral (AClat) (1280 × 600 × 20 mm) double-layer
anticoincidence scintillation detectors that ensure
efficient (0.99995) detection of charged particles and a
time resolution of 300 ps;
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Fig. 1. Physical layout of the GAMMA-400 γ-ray telescope: ACtop, upper anticoincidence detector; AClat, lateral anticoincidence
detector; C, converter/tracker; S1 (ToF) and S2 (ToF), scintillation detectors of the time-of-flight system; CC1 and CC2, coor-
dinate-sensitive calorimeter; S3 and S4, scintillation detectors; LDC, lateral detectors of the calorimeter.
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—a converter/tracker (C) consisting of 13 pairs of
planes of silicon strip detectors (X- and Y-coordinates)
with a strip pitch of 0.08 mm (it is 0.24 mm for Fermi-
LAT) and an analog readout that doubles the accuracy
of determining the location of a particle’s passage,
compared to the binary readout used in Fermi-LAT.
Tungsten converters are located on the 11 upper pan-
els: 7 panels 0.1 r.l. thick and 4 panels 0.025 r.l. thick
(where r.l. is the unit of radiation length). The total
thickness of the converter/tracker for the vertical inci-
dence of particles is ~1 r.l.;

—a time-of-flight system (ToF) of two-layer plas-
tic scintillation detectors S1 (1000 × 1000 × 20 mm)
and S2 (1000 × 1000 × 20 mm). Detectors S1 and S2
are separated by a distance of ~500 mm; the ToF pro-
vides a separation of at least 1000 for events from above
and below and has a time resolution of more than
300 ps;

—a coordinate-sensitive calorimeter (CC) with the
area of 1000 × 1000 mm2. The CC consists of two
parts: CC1 and CC2. (a) CC1 consists of 2 layers.
Each layer is a set of scintillation crystals CsI(Tl) and
two-layer (with mutually perpendicular strips) silicon
strip detectors with a pitch of 0.08 mm. CC1 is 2 r.l.
thick; (b) CC2 consists of 28 × 28 CsI(Tl) crystals.
Each crystal with dimensions of 36 × 36 × 370 mm is
inside a carbon fiber grating 0.4 mm thick. CC2 is
~20 r.l. thick. (c) The total thickness of the calorimeter
for normal incidence of particles is ~22 r.l. (8.6 r.l. for
Fermi-LAT) or 1.0 i.l. (where i.l. is the length of
nuclear interaction). The total thickness of the calo-
rimeter for detecting particles from lateral directions is
54 r.l. or 2.5 i.l.
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—two-layer plastic scintillation detectors C3 and
C4 of the calorimeter with dimensions of 1000 ×
1000 × 20 mm;

—two-layer plastic lateral detectors of the calorim-
eter (LDC).

Segmentation and time approaches are used to
eliminate backscattering particles (mainly photons
with ~1 MeV) generated by interaction with the calo-
rimeter matter and directed in all directions (including
upward, which blocks the AC detector).

GAMMA-400 is able to investigate γ-ray f luxes in
the energy range of ~20 MeV to several TeV and
fluxes of the CR electron component in the range of
several GeV to ~20 TeV from both top–down (the
GAMMA-400 field of view is ±45°), and four lateral
directions with a total geometrical factor of more than
3 m2 sr. The γ-ray telescope uses a single trigger,

, to record γ-ray emissions of both high
and low energies. Figure 2 shows the dependences of
the effective area; the GAMMA-400 angular and
energy resolutions, depending on the γ-ray energy;
and the dependence of the effective area on the angle
of incidence of particles. GAMMA-400 will have
unprecedented angular (~0.01° at Eγ = 100 GeV) and
energy (~1% at Eγ = 100 GeV) resolutions 5–10 times
better than those of Fermi-LAT and ground-based
telescopes. The proton rejection factor is ~5 × 105.
When calibrating the calorimeter prototype at the
S-25R synchrotron of the Lebedev Physical Institute
on a positron beam with an energy of 300 MeV, an
energy resolution of 10% was obtained, which corre-
sponds to the results from calculations.
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Fig. 2. GAMMA-400 γ-ray telescope performance:
(a) Dependence of the effective area on the energy for ver-
tically incident particles; (b) dependence of effective area
on the angle of incidence of particles for (1) Eγ = 1 GeV;
(2) Eγ = 10 GeV; and (3) Eγ = 100 GeV. (c) Dependence of
energy resolution on energy for parts of the converter:
(1) from 4 tungsten panels 0.025 r.l. thick; (2) from 7 tung-
sten panels 0.1 r.l. thick; (d) dependence of angular resolu-
tion on energy for (1) GAMMA-400 (pitch, 80 μm; analog
readout); (2) Fermi-LAT (pitch, 228 μm; digital readout).
S

The main mode of GAMMA-400 operation is pre-
cision measurements of individual regions of the
celestial sphere (e.g., the Galactic center) with contin-
uous observations of up to 100 days in a highly ellipti-
cal orbit outside the radiation belts and without shad-
ing the γ-ray telescope’s field of view of the Earth.

CONCLUSIONS

Compared to the Fermi-LAT telescope, the
GAMMA-400 γ-ray telescope will provide several
times better angular and energy resolution in the
energy range of ~20 MeV to ~1000 GeV and at energies
above 10 GeV. The angular resolution for Eγ = 100 GeV
is ~0.01°, and the energy resolution is ~1%. The pos-
sibility of continuous long-term observation of indi-
vidual regions of the celestial sphere (e.g., the Galactic
center) will allow us to make considerable progress in
performing precision studies of discrete γ-ray sources,
measuring the energy spectra of Galactic and extraga-
lactic diffuse γ-ray emission, resolving f luxes of γ-ray
emissions, and determining the CR electron–positron
component, which could be associated with the anni-
hilation or decay of dark matter particles.
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