Presented by A.A. Leonov on behalf of GAMMA-400 collaboration

Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements

GAMMA-400 collaboration

A.M. Galper^{a,b}, V. Bonvicini^c, N.P. Topchiev^a, O. Adriani^d, R.L. Aptekar^e, I.V. Arkhangelskaya^b, A.I. Arkhangelskiy^b,
A.V. Bakaldin^b, L. Bergstrom^f, E. Berti^d, G. Bigongiari^g, S.G. Bobkov^h, M. Boezio^c, E.A. Bogomolov^e, S. Bonechi^g,
M. Bongi^d, S. Bottai^d, G. Castelliniⁱ, P.W. Cattaneo^j, P. Cumani^c, O.D. Dalkarov^a, G.L. Dedenko^b, C. De Donato^k,
V.A. Dogiel^a, N. Finetti^d, M.S. Gorbunov^h, Yu.V. Gusakov^a, B.I. Hnatyk¹, V.V. Kadilin^b, V.A. Kaplin^b, A.A. Kaplun^b,
M.D. Kheymits^b, V.E. Korepanov^m, J. Larssonⁿ, A.A. Leonov^{a,b}, V.A. Loginov^b, F. Longo^c, P. Maestro^g, P.S. Marrocchesi^g,
A.L. Men'shenin^o, V.V. Mikhailov^b, E. Mocchiutti^c, A.A. Moiseev^p, N. Mori^d, I.V. Moskalenko^q, P.Yu. Naumov^b, P. Papini^d,
M. Pearceⁿ, P. Picozza^k, A. Rappoldi^j, S. Ricciariniⁱ, M.F. Runtso^b, F. Rydeⁿ, O.V. Serdin^h, R. Sparvoli^k, P. Spillantini^d,
Yu.I. Stozhkov^a, S.I. Suchkov^a, A.A. Taraskin^b, M. Tavani^r, A. Tiberio^d, E.M. Tyurin^b, M.V. Ulanov^e, A. Vacchi^c,
E. Vannuccini^d, G.I. Vasilyev^e, Yu.T. Yurkin^b, N. Zampa^c, V.N. Zirakashvili^s and V.G. Zverev^b

^aLebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia

^bNational Research Nuclear University MEPhI, Moscow, Russia

^cIstituto Nazionale di Fisica Nucleare, Sezione di Trieste and Physics Department of University of Trieste, Trieste, Italy

dIstituto Nazionale di Fisica Nucleare, Sezione di Firenze and Physics Department of University of Florence, Firenze, Italy

eIoffe Institute, Russian Academy of Sciences, St. Petersburg, Russia

^fStockholm University, Department of Physics; and the Oskar Klein Centre, AlbaNova University Center, Stockholm, Sweden ^gDepartment of Physical Sciences, Earth and Environment, University of Siena and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy

^hScientific Research Institute for System Analysis, Russian Academy of Sciences, Moscow, Russia

ⁱIstituto di Fisica Applicata Nello Carrara - CNR and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Firenze, Italy

^jIstituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy

^kIstituto Nazionale di Fisica Nucleare, Sezione di Roma 2 and Physics Department of University of Rome Tor Vergata, Rome, Italy ^ITaras Shevchenko National University of Kyiv, Kyiv, Ukraine

°Research Institute for Electromechanics, Istra, Moscow region, Russia

^mLviv Center of Institute of Space Research, Lviv, Ukraine

ⁿKTH Royal Institute of Technology, Department of Physics; and the Oskar Klein Centre, AlbaNova University Center, Stockholm, Sweden ^pCRESST/GSFC and University of Maryland, College Park, Maryland, USA

^qHansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, USA ^rIstituto Nazionale di Astrofisica IASF and Physics Department of University of Rome Tor Vergata, Rome, Italy

^sPushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Troitsk, Moscow region, Russia

Physical scheme

Scientific goals

Physics goals for total telescope acceptance (~4200 cm² sr)

1.1 The features in the energy spectra of high energy γ -ray emissions from discrete and extended sources associated with particles of dark matter

1.2 The variability of high energy γ -ray emissions from discrete sources in order to clarify the nature of particle acceleration in such sources

1.3 γ-ray bursts, including high-energy bursts

1.4 high-energy γ -ray emissions, fluxes of electrons and positrons, and nuclei in solar flares

Physics goals for calorimeter only acceptance (~4 m² sr)

2.1 HE e+, e- from Dark Mater annihilation

2.2 HE e+, e- acceleration mechanisms

2.3 HE protons and nuclei (>>GeV)

PAMELA has revealed a break in proton and He spectrum (different slope) the knee of proton and helium

the spectral hardening of nuclei (E>TeV)

2.4 CR propagtion in the Galaxy

GAMMA-400 will be launched in highly elliptical orbit (500–300000 km) with an inclination angle of 51.8° . The initial orbit, after some months, evolves to a very high circular orbit (100.000 - 200.000 km) with an orbital period of about 7 days.

GAMMA-400 is less as survey and more as "pointing telescope" (without occultation of the Earth).

GAMMA-400 performance

Effective area as a function of 100 GeV

degr.

gamma incidence angle.

Effective area for vertical gamma.

$$S_{EFF}(\theta) = \frac{N_{DET}}{N_0} \times S$$

 $S_{EFF}(\theta) = \frac{N_{DET}}{N_0} \times S \times \cos \theta$ 4000 Effective area, cm^2 10000 2000 - trigger: 1000 (S1 before S2) && (no AC signal) cm^2 E=100 GeV 100 0 Ŧ geometrical 10 0,01 0,1 100 1000 trigger: E, GeV (S1 before S2) && (no AC signal) Ŧ 10 15 20 25 30 35 40 45 50 55 60 65 70 0 5 10

Energy resolution

FERMI (http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm)

ICCPA, Moscow, October 9, 2015

Angular resolution

--- FERMI total (http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm)

ICCPA, Moscow, October 9, 2015

Angular resolution > 1 GeV

Initial circle distribution for supernova remnant IC 433 statistic

2 point sources (distance 0.05°) to distinguish

FERMI > 30.0 GeV

2 point sources (distance 0.05°) to distinguish

Модели распределения темной материи в Галактике

DM halo	α	$r_s \; [{ m kpc}]$	$\rho_s [{\rm GeV/cm^3}]$
NFW	_	24 42	0 184
Einasto	0.17	28.44	0.033
EinastoB	0.11	35.24	0.021
Isothermal		4.38	1.387
Burkert		12.67	0.712
Moore		30.28	0.105

ICCPA, Moscow, October 9, 2015

Galactic center (-0.87<*l*<1; -0.285<*b*<0.3). 3FGL catalog

Name	Longitude	Latitude	Flux, 10-100 GeV, gamma/(cm ² sec)	Power index	Number of gamma (FERMI LAT)
J1745.6-2859c	-0,0444	-0,0393	9,998 ×10 ⁻¹⁰	2,32	252
J1745.3-2903c	-0,136	-0,0201	3,06×10 ⁻¹⁰	2.29	77
J1746.3-2851c	0,1492	-0,1032	4,57×10 ⁻¹⁰	2,32	115
J1747.0-2828	0,5572	-0,0413	6,65×10 ⁻¹¹	2.43	17

GLONG *l* [dea]

ICCPA, Moscow, October 9, 2015

ICCPA, Moscow, October 9, 2015

ICCPA, Moscow, October 9, 2015

GAMMA-400 only calorimeter CC2 (CsI(Tl)) performance

N×N×N cubes	28×28×12
L	3.6 cm
Size	$1 \times 1 \times 0.47 \text{ m}^3$
X_0	54.6×54.6×23.4
λ_{I}	2.5×2.5×1.1
Mass	1683 kg

Protons and Helium (Polygonato model)											
Effective GF (m ² sr)	σ(E)/E	E>0.1 PeV		E>0.5 PeV		E>1 PeV		E>2 PeV		E>4 PeV	
		р	He	р	He	р	He	р	He	р	He
~4	35%	7.8×10 ³	7.4×10 ³	4.6×10 ²	5.1×10 ²	1.2×10 ²	1.5×10 ²	28	43	5	10

Expected number of proton and helium events in 10 years data taking, according to the Polygonato model

Calorimeter only proton energy resolution

Nuclei energy resolution

Calorimeter only angular resolution (gamma 100 GeV)

68% containment: 1.7⁰±0.2⁰ (Elena Vannuccini, INFN, Florence)

For HE (>1 TeV) protons and nuclei with 68% containment ~3^o (Sergio Bottai, INFN, Florence)

Conclusion

The instrument has been designed for the optimal detection of gamma rays in a broad energy range (from 100 MeV up to 3 TeV), with excellent angular and energy resolution.

The observatory will also allow precise and high statistic studies of the electron component in the cosmic rays up to the multi TeV region, as well as protons and nuclei spectra up to the knee region.

GAMMA-400 will allow to address a broad range of science topics, like search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts and charged cosmic rays acceleration and diffusion mechanism up to the knee.

Thanks for your attention