ECRS-2012 Moscow, July 2012

Space Gamma-Ray Telescope GAMMA-400

A.M. Galper^{1,2}, O. Adriani³, R.L. Aptekar⁴, I.V. Arkhangelskaja², A.I. Arkhangelskiy², M. Boezio⁵, V. Bonvicini⁵, K.A. Boyarchuk⁶, Yu.V. Gusakov¹, M.I. Fradkin¹, V.A. Kachanov⁷, V.A. Kaplin², E.N. Korchagin¹⁵, M.D. Kheymits², A.A. Leonov², F. Longo⁵, P. Maestro⁸, P. Marrocchesi⁸, E.P. Mazets⁴, I.A. Mereminskiy², E. Mocchiutti⁵, A.A. Moiseev⁹, N. Mori³, I. Moskalenko¹⁰, P.Yu. Naumov², P. Papini³, P. Picozza¹¹, V.G. Rodin¹², M.F. Runtso², R. Sparvoli¹¹, P. Spillantini³, S.I. Suchkov¹, M. Tavani¹³, N.P. Topchiev¹, A. Vacchi⁵, E. Vannuccini³, Yu.T. Yurkin², N. Zampa⁵, V.N. Zirakashvili¹⁴, V.G. Zverev²

 ¹ Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia; ² National Research Nuclear University MEPhl, Moscow, Russia; ³ Istituto Nazionale di Fisica Nucleare, Sezione di Firenze and Physics Department of University of Florence, Florence, Italy; ⁴ Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia; ⁵ Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy; ⁶ Open Joint Stock Company "Research Institute for Electromechanics", Istra, Moscow region, Russia; 	 ⁷ Institute for High Energy Physics, Protvino, Moscow region, Russia; ⁸ Istituto Nazionale di Fisica Nucleare, Sezione di Pisa and Physics Department of University os Siena, Siena, Italy; ⁹ NASA Goddard Space Flight Center and CRESST/University of Maryland, Maryland, USA; ¹⁰ Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, USA; ¹¹ Istituto Nazionale di Fisica Nucleare, Sezione di Roma 2 and Physics Department of University of Rome "Tor Vergata", Rome, Italy; 	 ¹² Space Research Institute, Russian Academy of Sciences, Moscow, Russia; ¹³ Istituto Nazionale di Astrofisica – IASF and Physics Department of University of Rome "Tor Vergata", Rome, Italy. ¹⁴ Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN) Troizk, , Moscow region, Russia; ¹⁵ Lavochkin Association, Khimki, Moscow region, Russia
	"Tor Vergata", Rome, Italy;	

Abstract

The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV – 3 TeV is presented. GAMMA-400 will be installed on the Navigator space service platform. This mission is approved and funded by the Russian Federal Space Agency. The launch is planned for 2018. The mission (baseline concept) is optimized for the high-energy gamma-radiation above ~1 GeV with unprecedented angular resolution ~0.01° at $E_{\gamma} > 100$ GeV and energy resolution ~1% at $E_{\gamma} > 100$ GeV, with the proton rejection factor ~10⁶. The observatory will also include the KONUS-FG gamma-ray burst monitor. The option of enhancing instrument performance at low energy below few GeV by placing more Si strip tracker planes without passive converter is currently under consideration in Italy and USA.

Main Scientific Objectives

- search for dark matter particle annihilation and decay signatures;
- study of processes in active astrophysical objects both Galactic and extragalactic, namely, the Galactic center;
- study of origin and propagation of CR electron + positron and nuclear component of very high energy;

dea

- study of gamma-ray bursts.

Energy resolution

Energy range, GeV	0,03-30	0,03-50	0,02-300	10-10000	0,1-3000	>100	>50	>100
Angular resolution (Ε _γ > 100 GeV)	0,2° (E _γ ~0,5 GeV)	0,1° (E _γ ~1 GeV)	0,2°	0,1°	~0,01°	0,1°	0,1°	0,1°
Energy resolution ($E_{\gamma} > 100 \text{ GeV}$)	15% (Ε _γ ~0,5 GeV)	50% (Ε _γ ~1 GeV)	10%	2%	~1%	15%	20%	15%

Some 100 GeV gamma-ray sources, which can be observed by GAMMA-400						
Name	Туре	Expected flux I(>100 GeV),10 ⁻⁹ s ⁻¹ cm ⁻²	Expected number of quanta per 30 days N(>100 GeV)	Spectral index		
Center Ridge	UKN	263 per sr	2740 per sr	<u>2.29</u> ±0.07±0.02		
<u>3C 279</u>	FSRQ	219	2270	<u>4.11</u> ±0.68±0.2		
<u>PG 1553+113</u>	HBL	204	2120	<u>4.01</u> ±0.6±0.1		
PKS 2155-304	HBL	69	716	<u>3.53</u> ±0.05±0.1		
<u>1ES 1011+496</u>	HBL	68	701	<u>4</u> ±0.5±0.2		
<u>H 1426+428</u>	HBL	26	248	<u>3.55</u> ±0.46		
<u>Crab</u>	PWN	12	121	<u>2.48</u> ±0.03±0.2		
<u>Mkn 501</u>	HBL	11	111	<u>2.28</u> ±0.05		
<u>Mkn 421</u>	HBL	6.1	63	<u>3.2</u> ±0.2		
<u>1ES 1959+650</u>	HBL	5.8	60	<u>2.78</u> ±0.13		
<u>W Com</u>	IBL	4.6	47	<u>3.8</u> ±0.35±0.34		
<u>1ES 1218+304</u>	HBL	4.1	42	<u>3</u> ±0.4±0.7		
<u>Mkn 180</u>	HBL	3.6	37	<u>3.25</u> ±0.66±0.2		
BL Lac	LBL	3.2	33	<u>3.64</u> ±0.54±0.2		
<u>1ES 2344+514</u>	HBL	1.7	17	<u>3.3</u> ±0.7±0.7		

Total mass

2600 kg

GAMMA-400 baseline concept

AC - anticoincidence detectors (AC_{top} + AC_{lat}) C - Converter-Tracker - 1 Xo 10 Si(x,y) (pitch 0.1 mm) + 8 W (0.1 Xo)* S1, S2 - TOF detectors Si array - Si pad (1x1 cm²) detector S3, S4 - calorimeter scintillator detectors CC1 - imaging calorimeter 3Xo 4 layers: Csl 0.75 Xo + Si(x,y) (pitch 0.5 mm) CC2 - electromagnetic calorimeter 22Xo BGO (1024 crystals 2.5x2.5x25 cm³) LD - 4 lateral calorimeter detectors 50x120 cm² ND - neutron detector

* To be changed to "25 Si(x,y) (pitch 0.1 mm) + 4 W (0.2 Xo)" for enhanced LE instrument option

References:

2.

- GAMMA-400: A.M. Galper et al., Status of the GAMMA-400 Project, 2012, submitted to Advances in Space Research, and references therein KONUS-FG Gamma-ray burst monitor: R.L. Aptekar et al., ApJL 698, 82 (2009) Fermi LAT: W.B. Atwood et al., ApJ 697, 1071 (2009), and <u>http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm</u>
- EGRET: D.J. Thompson et al., ApJS 86, 629 (1993) AGILE: M. Tavani et al., A&A 502, 995 (2009)
- AGILE: M. Tavani et al., A&A 502, 995 (2009)
 CALET: S. Torii et al., ASR 41, 2032 (2008)
 MAGIC: J. Aleksis et al., ApJ 721, 843 (2010)

