

Возможности гамма-телескопа ГАММА-400 регистрировать частицы темной материи

Н. П. Топчиев (от имени коллаборации «ГАММА-400») НИЯУ МИФИ 14 ноября 2012 г.

GAMMA-400 TEAM

ФИАН: А.М. Гальпер, Е.Н. Гудкова, Ю.В. Гусаков, С.И. Сучков, Н.П. Топчиев,

М.И. Фрадкин

НИЯУ МИФИ: И.В. Архангельская, А.И. Архангельский, В.Г. Зверев, В.А. Каплин,

И.А. Мереминский, В.В. Михайлов, А.А. Леонов, П.Ю. Наумов, М.Ф. Рунцо,

М.Д. Хеймиц, Ю.Т. Юркин

НИИЭМ (Истра): К.А. Боярчук

ИФВЭ (Протвино): В.А. Качанов, А.Н. Левин

ФТИ им. А.Ф. Иоффе (Санкт-Петербург): Р.Л. Аптекарь, Е.П. Мазец

ИКИ: В.Г. Родин, Г.А. Аванесов

ИЗМИРАН: В.Н. Зиракашвили

INFN (Italy, Florence): O. Adriani, N. Mori, P. Papini, P. Spillantini, E. Vannuccini

INFN (Italy, Trieste): M. Boezio, V. Bonvicini, F. Longo, E. Mocchiutti, A. Vacchi, N. Zampa

INFN (Italy, Siena): P. Maestro, P. Marrocchesi

INFN (Italy, Roma): P. Picozza, R. Sparvoli

INAF (**Italy, Roma**): M. Tavani

NASA Goddard Space Flight Center (USA): A.A. Moiseev

Stanford University (USA): I.V. Moskalenko

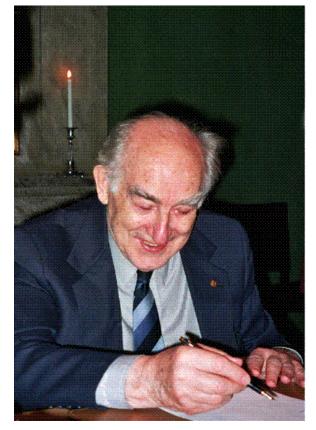
Указанные специалисты принимали участие в следующих российских и международных проектах:

-космических: АННА-3, АННА-6, ГАММА-1, КОРОНАС-ФОТОН, PAMELA, AGILE,

Fermi, CALET;

-ускорительных: ALICE, ATLAS, CMS.

ОСНОВНЫЕ НАУЧНЫЕ ЗАДАЧИ ПРОЕКТА «ГАММА-400»


Комплекс научной аппаратуры «ГАММА-400» предназначен для получения данных для определения природы «темной материи» во Вселенной, развития теории происхождения высокоэнергичных космических лучей и физики элементарных частиц, исследования космического гамма-излучения в диапазоне высоких энергий (100 МэВ – 3000 ГэВ), регистрации заряженных частиц космических лучей, поиска и исследования гамма-всплесков.

Разработка проекта «ГАММА-400» и проведение исследований выполняется в рамках Федеральной космической программы РФ.

История проекта «ГАММА-400»

Л.В. Курносова (1918-2006)

В.Л. Гинзбург (1916-2009)

Первые работы по ГАММА-400 опубликованы в 1987-1988 гг. (Proc. 20ICRC, Moscow, 1987; Space Sci. Rev., 1988, 49, 215). По предложению Л.В. Курносовой (ФИАН, ЛКЛ) и В.Л. Гинзбурга (ФИАН, ТО) в научные задачи ГАММА-400 включен поиск особенностей в энергетическом спектре гамма-квантов, связанный с частицами темной материи, в частности, попытки зарегистрировать гамма-линии, появляющиеся при аннигиляции нейтралино.

В. Гинзбург, Л. Курносова и др. Препринт ФИАН №3, 1995

Нейтралино это частицы, именуемые также WIMP (WIMP - Weakly Interacting Massive Particles), еще не обнаружены. Согласно данным, приведенным в [5], масса нейтралино $m_\chi > 45$ ГэВ. Один из методов детектирования нейтралино - наблюдение продуктов их аннигиляции. В результате этого процесса должны появляться различные заряженные частицы (в том числе антипротоны), а также гамма-кванты. Анализ процесса аннигиляции нейтралино - не простая задача, ей посвящено много работ (см., например, [8, 9]). Особенно большой интерес представляет процесс $\chi + \chi \rightarrow \gamma + \gamma$, т.е. аннигиляция с образованием двух фотонов. Очевидно, энергия последних равна m_χ .

Современное состояние вопроса о поиске частиц темной материи изложено в докладе А.М. Гальпера «Поиск гипотетических частиц темной материи».

В последнее время российская и зарубежная научная общественность уделяет большое внимание поискам следов частиц «темной материи» в гамма-диапазоне от десятков ГэВ до нескольких ТэВ. При статистическом анализе данных наблюдений гамма-телескопом Fermi-LAT вблизи центра Галактики, была обнаружена особенность в энергетическом спектре гамма-излучения в области ~130 ГэВ. Такая особенность могла быть вызвана, в частности, наличием гамма-линии, возникающей при аннигиляции слабовзаимодействующих частиц (вимп-частицы, WIMP) «темной материи» с образованием двух гамма-квантов. Выделить эту гамму-линию на фоне диффузного галактического гамма-излучения и гамма-излучения от различных дискретных источников, которых в центре Галактики чрезвычайно много, используя энергетические и угловые возможности Fermi-LAT (угловое разрешение 0,2° и энергетическое разрешение 10% для энергий 100 ГэВ) практически невозможно.

В многих работах были проанализированы инструментальные характеристики различных экспериментов и делается вывод о чрезвычайной важности высокого углового и энергетического разрешений для выделения этой гамма-линии.

В последнее время в процессе разработки проекта «ГАММА-400» были выступления с докладами на российских и зарубежных конференциях, подготовлены и опубликованы статьи в российской и зарубежной научной литературе, в электронной библиотеке (arXiv.org) Корнельского университета США (Cornell University), в которых представлены данные о разработке, характеристиках и возможностях ГАММА-400.

Гальпер А.М. и др., Известия РАН, сер. физ. (2011), т. 75, с. 926-928. Гальпер А.М. и др., Краткие сообщения по физике (2011), т. 7, с. 14-23. Galper A., et al., Astrophys. Space Sci. Trans. (2011), Vol. 7, pp. 75–78. Galper A., et al., Il Nuovo Cimento (2011), Vol. 34 C, No. 3, pp. 71-75. Galper A., et al., Advances and Space Research (2012); arXiv:1201.2490 (2012). Galper A., et al., arXiv:1210.1457 (2012).

Эти работы нашли большой отклик в научной общественности.

СПИСОК РАБОТ СО ССЫЛКАМИ НА ГАММА-400

- 1. Abazajian K.N., et al., arXiv:1111.2835 (2011).
- 2. Bergström L., arXiv:1202.1170 (2012).
- 3. Boyarsky A., et al., arXiv:1205.4700 (2012).
- 4. Bergström L., arXiv:1205.4882 (2012).
- 5. Bergström L., et al., arXiv:1207.6773 (2012).
- 6. Hooper D. and Linden T., arXiv:1208.0828 (2012).
- 7. Boezio M. and Mocchiutti E., arXiv:1208.1406 (2012).
- 8. Bringmann T. and Weniger C., arXiv:1208.5481 (2012).
- 9. Picozza P. and Boezio M., arXiv:1208.5897 (2012).
- 10. Bergström L., Phys. Rev. D 86, 103514 (2012); arXiv:1208.6082 (2012).
- 11. Hooper D., et al., arXiv:1209.3015 (2012).
- 12. Zechlin H.-S. and Horns D., arXiv:1210.3852 (2012).
- 13. Rott C., arXiv:1210.4161 (2012).
- 14. Conrad J., arXiv:1210.4392 (2012).
- 15. Bernard D., arXiv:1211.1534 (2012).

	Time of operation	E-range [GeV]	$A_{ m eff} \ [{ m m}^2]$	Sens. $[10^8 \text{m}^2 \text{s}]^{-1}$	$\frac{\Delta E/E}{[\%]}$	F.O.V. [sr]	Δ <i>θ</i> [°]
Fermi-LAT AMS-02/Ecal AMS-02/Trk GAMMA-400	2008–2018? 2011–2021? 2011–2021? 2018?–	0.2–300 10–1000 1–300 0.1–3000	0.8 0.2 0.06 0.4	200 1000 1000 100	11 3 15 1	2.4 0.4 1.5 1.2	0.2 1.0 0.02 0.01
MAGIC HESS-II CTA	2009 2012 2018?	$\stackrel{>}{\scriptstyle \gtrsim} 50$ $\stackrel{>}{\scriptstyle \gtrsim} 30$ $\stackrel{>}{\scriptstyle \gtrsim} 20$	$\begin{array}{c} 2 \cdot 10^4 (7 \cdot 10^4) \\ 4 \cdot 10^3 (10^5) \\ 5 \cdot 10^4 (10^6) \end{array}$	10(0.1) 10(0.2) 1(0.02)	20(15) 15(15) 20(10)	0.01 0.01 0.02–0.1	0.1(0.05) $0.13(0.07)$ $0.1(0.06)$

Table 1: Rough comparison of basic telescope characteristics relevant for indirect DM searches with gamma rays, for a selection of typical space- and ground-based experiments that are currently operating, shortly upcoming or planned for the future. The quoted sensitivity is for point sources at the 5σ level, after 1yr (50 hrs) of space- (ground-) based observations and assuming typical backgrounds. Where applicable, numbers refer to photon energies at or above $E \simeq 100$ GeV (1 TeV). More details in Refs. [16] (Fermi-LAT), [17] (AMS-02), [18] (GAMMA-400), [19] (MAGIC), [20] (HESS-II) and [21] (CTA).

Bringmann T. and Weniger C., arXiv:1208.5481 (2012).

As a final remark, a potential successor of Fermi-LAT such as GAMMA-400 will significantly improve the observable energy range (100 MeV – 3 TeV), angular resolution (~0.01° at 100 GeV), and energy resolution (~1% at 100 GeV). The launch of GAMMA-400 is planned for 2018. For the case of unidentified Fermi-LAT sources, such a telescope will constrain their celestial position with enhanced precision.

Zechlin H.-S. and Horns D., arXiv:1210.3852 (2012).

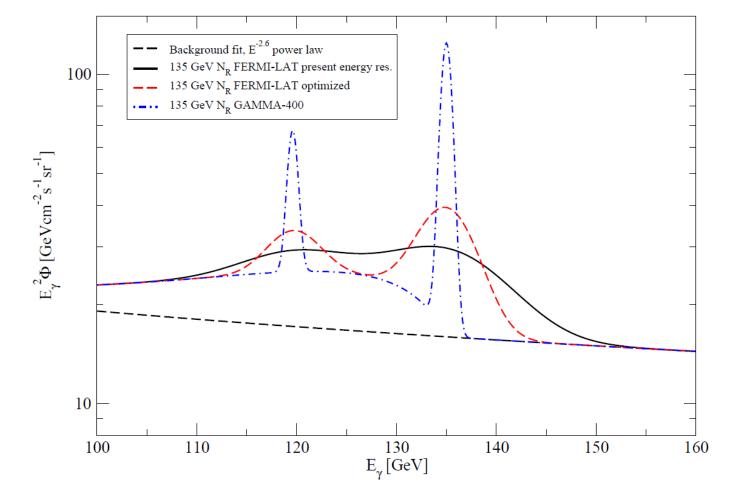
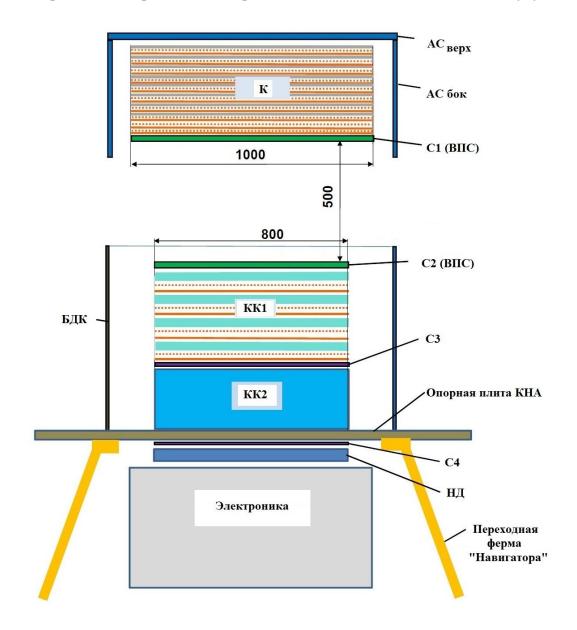
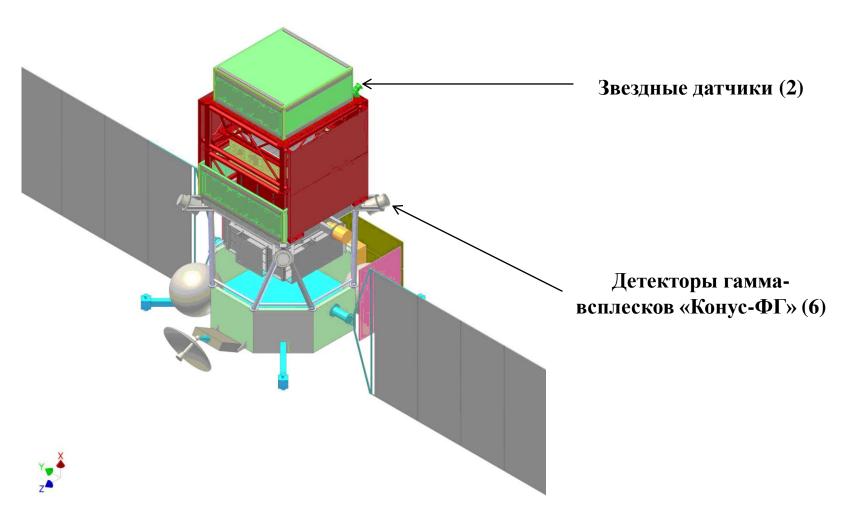
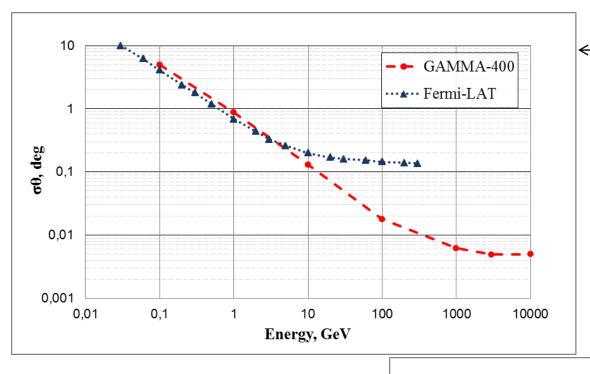
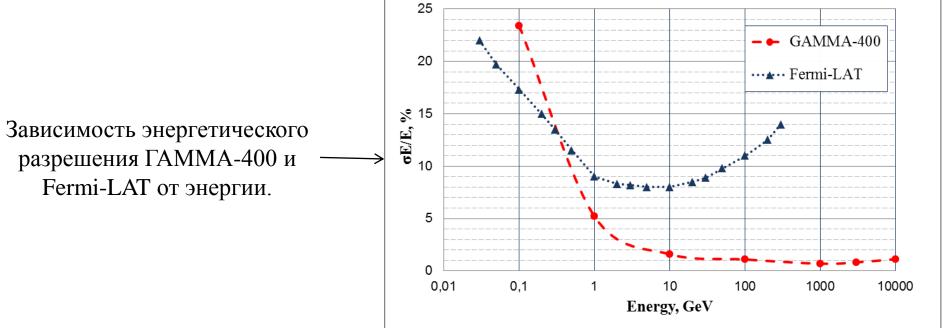




Fig. 3: The gamma-ray differential energy results (multiplied by E^2) for a 135 GeV right-handed neutrino dark matter candidate are shown, with the present Fermi-LAT energy resolution $\Delta E/E = 10\%$ FWHM (solid black line), with a factor of 2 improvement (red dashed line) and with a future gamma-ray instrument, such as GAMMA-400 [39] (dash-dotted blue line) with resolution at the one percent level. The extrapolated power-law ~ $E^{-2.6}$ of the presently measured continuous gamma-ray background is also shown. Bergström L., arXiv:1208.6082 (2012).

ФИЗИЧЕСКАЯ СХЕМА ГАММА-400


ПРЕДВАРИТЕЛЬНАЯ СХЕМА РАЗМЕЩЕНИЯ КНА «ГАММА-400» НА ПЛАТФОРМЕ «НАВИГАТОР»


Разработку космического аппарата и платформы «Навигатор» осуществляет НПО им. С.А. Лавочкина

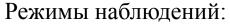
ХАРАКТЕРИСТИКИ ГАММА-ТЕЛЕСКОПА ГАММА-400

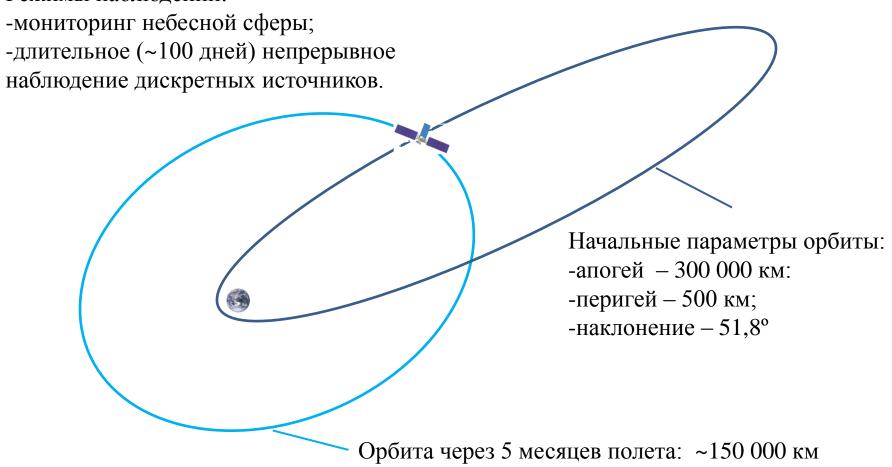
	1988	2012	
Диапазон энергий, ГэВ	4-400	0,1–3000	
Угловое разрешение, градус	3	~0,01	
Энергетическое разрешение, %	5	~1	
Толщина калориметра, р.е.д.	16	~25	
Чувствительная площадь, м ²	0,36	0,64	
Вес, кг	700	2600	
Энергопотребление, Вт	700	2000	
Объем передаваемой информации, Гбайт/сутки	0,5	100	
Регистрируемые частицы	гамма–кванты, протоны	гамма-кванты, электроны, позитроны, протоны, ядра	

Зависимость углового разрешения ГАММА-400 и Fermi-LAT от энергии. При выборке «золотых» событий при E_{γ} =100 МэВ угловое разрешение можно улучшить с 4.5° до 1.5°.

Сравнительные характеристики работавших, существующих и планируемых космических и наземных

гамма-телескопов


	КОСМИЧЕСКИЕ ГАММА-ТЕЛЕСКОПЫ					наземные гамма-телескопы			
	EGRET	AGILE	Fermi-	CALET	ГАММА	H.E.S.S	MAGIC-	VERITAS	СТА
			LAT		-400	II	II		
	США	Италия	США	Япония	Россия	Намибия	Испания,	США,	
							Канары	Аризона	
Годы работы	1991-2000	2007-	2008-	2014	2018	2012-	2009-	2007-	2018
Диапазон энергий,	0,03-30	0,03-50	0,02-300	10-10000	0,1-	> 30	> 50	> 50	> 20
ГэВ					3000				
Эффективная	0,2	0,1	0,8	0,1	0,4	10 ⁵	10^{5}	10 ⁵	10^{6}
площадь, м²									
Угловое	0,2°	0,1°	0,1°	0,1°	~0,01°	0,07°	0,07°	0,1°	0,1°
разрешение	(E _γ ~0,5 ΓэВ)	(E _γ ~1 ΓэB)					$(E_{\gamma} = 300 \ \Gamma \ni B)$		$(E_{\gamma} = 100 \ \Gamma \ni B)$
$(E_{\gamma} > 100 \ \Gamma \ni B)$									0,03°
									$(E_{\gamma} = 10 \text{ T} \cdot \text{B})$
Энергетическое	15%	50%	10%	2%	~1%	15%	20%	15%	20%
разрешение	(E _γ ~0,5 ΓэВ)	(E _γ ~1 ΓэB)					$(E_{\gamma} = 100 \ \Gamma \ni B)$		$(E_{\gamma} = 100 \Gamma \ni B)$
$(E_{\gamma} > 100 \Gamma \ni B)$							15%		5%
·							$(E_{\gamma} = 1 \text{ T} \ni B)$		$(E_{\gamma} = 10 \text{ T} \circ \text{B})$


СХЕМА ВЫВЕДЕНИЯ ГАММА-400

Планируемая дата запуска КА «ГАММА-400» – 2018 г.

РЕЖИМЫ НАБЛЮДЕНИЙ И ЭВОЛЮЦИЯ ОРБИТЫ ПОЛЕТА ГАММА-400

По данным второго каталога дискретных источников Fermi-LAT составлена таблица, в которой представлены дискретные источники, обнаруженные Fermi-LAT, и число гамма-квантов, которое сможет зарегистрировать ГАММА-400 (эффективная площадь 4000 см²) за 100 дней наблюдения источника.

Номер по второму каталогу Fermi	Наименование	Спектр. Индекс	Интегр. поток F(> 10 ГэВ), 10 ⁻¹⁰ см ⁻² с ⁻¹	Ожидаемое число квантов N(> 10 ГэВ)
				за 100 дней
2FGL J0007.0+7303	LAT PSR J0007+7303	1.45	12.48	43,1
2FGL J0222.6+4302	3C 66A	1.85	21.70	75,0
2FGL J0319.8+4130	NGC 1275	2.00	10.96	37,9
2FGL J0428.6-3756	PKS 0426-380	1.95	14.65	50,6
2FGL J0449.4-4350	PKS 0447-439	1.86	11.27	38,9
2FGL J0534.5+2201	PSR J0534+2200, Crab	2.14	74.46	257,3
2FGL J0538.8-4405	PKS 0537-441	2.01	16.72	57,8
2FGL J0617.2+2234e	SNR G189.1-03.0, IC443	1.79	31.24	108,0
2FGL J0633.9+1746	PSR J0633+1746	1.22	28.02	96,8
2FGL J0835.3-4510	PSR J0835-4510	1.52	97.09	335,5
2FGL J1104.4+3812	Mkn 421	1.77	42.31	146,2
2FGL J1427.0+2347	PKS 1424+240	1.78	15.84	54,7
2FGL J1555.7+1111	PG 1553+113	1.67	22.37	77,3
2FGL J1603.8-4904	PMN J1603-4904	2.04	11.35	39,2
2FGL J1653.9+3945	Mkn 501	1.74	12.46	43,1
2FGL J1709.7-4429	PSR J1709-4429	1.62	23.26	80,4
2FGL J1745.6-2858		2.34	13.21	45,6
2FGL J1801.3-2326e	SNR G006.4-00.1	2.39	11.01	38,1
2FGL J1824.5-1351e	HESS J1825-137	1.69	23.34	80,7
2FGL J1923.2+1408e	W51C	2.12	15.28	52,8
2FGL J2001.1+4352	MAGIC J2001+435	1.90	10.56	36,5
2FGL J2158.8-3013	PKS 2155-304	1.84	26.65	92,1

По данным каталога дискретных источников для энергий более нескольких ТэВ составлена таблица, в которой представлены дискретные источники, гамма-излучение от которых зарегистрировано наземными гамма-телескопами, и число гамма-квантов, которое сможет зарегистрировать ГАММА-400 (эффективная площадь 4000 см²) за 100 дней наблюдения источника.

Наименование	Установка	Спектр. индекс	Интегр. поток	Ожидаемое число квантов	
		підске	F(> 100 Γ ₂ B), 10 ⁻⁹ cm ⁻² c ⁻¹	N(> 100 ГэВ) за 100 дней	
<u>1ES 1011+496</u>	MAGIC	4,0	67,7	2336,7	
1ES 1218+304	MAGIC	3,0	4,09	141,3	
1ES 1959+650	MAGIC	2,78	5,805	200,7	
1ES 2344+514	MAGIC	3,3	1,67	57,7	
<u>3C 279</u>	MAGIC	4,11	219,0	7566,7	
BL Lac	MAGIC	3,64	3,18	110,0	
<u>Crab</u>	H.E.S.S., MAGIC	2,48	11,7	403,3	
MAGIC J0616+225	MAGIC, VERITAS	3,1	0,605	20,9	
<u>Mkn 180</u>	MAGIC	3,25	3,60	124,3	
<u>Mkn 421</u>	H.E.S.S., MAGIC	3,2	6,05	209,0	
<u>Mkn 501</u>	MAGIC	2,28	10,7	370,0	
PG 1553+113	H.E.S.S., MAGIC	4,01	204,0	7066,7	
PKS 2155-304	H.E.S.S., MAGIC	3,53	69,0	2386,7	
RX J0852.0-4622	H.E.S.S.	2,2	0,331	11,4	
RX J1713.7-3946	H.E.S.S.	2,84	0,618	21,4	
W Com	VERITAS	3,8	4,570	158,0	