December 2017    
 
GAMMA-400
scientific complex
 
   
 
      
2016

2015

2014

2013


 

GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) scientific complex is designed to obtain the data on determining the dark matter nature in the universe, to develop the theory of origin of high-energy cosmic rays and the elementary particle physics, to investigate cosmic gamma-ray emission in the high-energy range of 20 MeV Ц 1000 GeV and X-ray emission in the energy range of 5-30 keV, to detect cosmic rays, and to search for and study gamma-ray bursts.

 

The GAMMA-400 design and investigations are performed within the framework of the Russian Federal Space Programs for 2006-2015 and 2016-2025.

 

The GAMMA-400 scientific complex is designed by:

 

GAMMA-400 Principal Investigator is Professor Arkadiy Galper;

GAMMA-400 Deputy Principal Investigator, Project Manager and Chief Designer is Nikolay Topchiev.

The GAMMA-400 Project was approved in 2009 by academicians Vitaly Ginzburg and Gennady Mesyats.

 




GAMMA-400 scientific goals

Modern state of the fundamental researches on cosmology, astronomy, high-energy and cosmic-ray physics issues the challenges, which cannot be solved without attracting the results of investigations on the extra-atmospheric very high-energy gamma-ray astronomy (108-1012 eV), as well as simultaneous investigations of Galactic cosmic-ray electrons and positrons. On the basis of the latest results in the gamma-ray astronomy, the results on dark matter particle searching, as well as previous researches on the GAMMA-400 project, the GAMMA-400 main scientific investigations and goals are formulated.

 

Main scientific investigations

  • To study the nature and features of weakly interacting massive particles, from which the dark matter consists;
  • To study the nature and features of variable gamma-ray activity of astrophysical objects from stars to Galactic clusters;
  • To study the mechanisms of generation, acceleration, propagation, and interaction of cosmic rays in Galactic and intergalactic spaces.

 

Scientific goals

  1. To measure energy spectra of Galactic and extragalactic diffuse and isotropic gamma-ray emission, to search for features in gamma-ray energy spectra, to search for gamma-ray lines in the emission of discrete sources, in diffuse and isotropic gamma-ray emission when annihilating or decaying dark matter particles.
  2. To detect fluxes of electrons + positrons with energy more than 1 GeV, to measure their energy spectra and to search for features, which can be connected with annihilating or decaying dark matter particles.
  3. To search for new and study known Galactic and extragalactic discrete high-energy gamma-ray sources: supernova remnants, pulsars, accreting objects, microquasars, active galactic nuclei, blazars, quasars; measure their energy spectra and luminosity.
  4. To identify discrete gamma-ray sources with known sources in other energy ranges including discrete sources discovered by ground-based gamma-ray facilities.
  5. To monitor luminosity and energy spectrum of high-energy gamma-ray sources for studying the nature of their variability.
  6. To search for and investigate high-energy gamma-ray bursts in the energy range 10 keV - 10 MeV and 100 MeV Ц 3000 GeV.
  7. To measure fluxes of Galactic nuclei up to Fe.
  8. To detect high-energy gamma rays and electrons + positrons fluxes from solar flares.

 

 

GAMMA-400 physical scheme


 

The basic idea of the instrument was outlined in earlier publications:

  • V. Dogiel, M. Fradkin, A. Kostin, L. Kurnosova, L. Razorenov, M. Rusakovich, N. Topchiev. On the gamma-astronomy observations in the energy range 4-400 GeV. 20th International Cosmic Ray Conference, Moscow, 1987, v. 2, pp. 356-359. Download, pdf, 390 Kb.
  • V. Dogiel, M. Fradkin, L. Kurnosova, L. Razorenov, M. Rusakovich, N. Topchiev. Some Tasks of Observational Gamma-Ray Astronomy in the Energy Range 5-400 GeV, Space Science Rev., 49, 215-226, 1988;
    Download, pdf, 653  б.
  • M. Fradkin, V. Ginzburg, E. Gorchakov, V. Kaplin, L. Kurnosova, A. Labensky, M. Runtso, N. Topchiev. Gamma-Radiation of the High Energy and Gamma-400 Project. 24th International Cosmic Ray Conference, Rome, Italy, 1995, v. 3, pp. 705-708.
    Download, pdf, 268  б.
  • V.L. Ginzburg, V.A. Kaplin, A.I. Karakash, L.V. Kurnosova, A.G. Labenskii, M.F. Runtso, A.P. Soldatov, N.P. Topchiev, M.I. Fradkin, S.K. Chernichenko, I.V. Shein. Development of the GAMMA-400 Gamma-Ray Telescope to Record Cosmic Gamma Rays with Energies up to 1 TeV, Cos. Res., 45, 449-451, 2007;
    Download, pdf, 138  б.
  • V.L. Ginzburg, V.A. Kaplin, M.F. Runtso, N.P. Topchiev, M.I. Fradkin. Advanced GAMMA-400 Gamma-Ray Telescope for Recording Cosmic Gamma Rays with Energies up to 3 TeV. Bulletin of the Russian Academy of Sciences: Physics, Vol. 73, No. 5, pp. 664-666, 2009;
    Download, pdf, 174  б.
  • V.L. Ginzburg, A.M. Galper, M.I. Fradkin, V.A. Kaplin, M.F. Runtso, N.P. Topchiev, V.G. Zverev. The GAMMA-400 Project. Investigation of Cosmic Gamma-Radiation and Electron-Positron Fluxes in the Energy Range 1-3000 GeV. Preprint no. 10, Lebedev Physical Institute, Moscow, 2009.


    Download, pdf, 264  б.

 

The design is being improved using the results of the current space missions Fermi-LAT, AGILE and possibilities of the GAMMA-400 realization:

  • A.M. Galper, R.L. Aptekar, I.V. Arkhangelskaya, M. Boezio, V. Bonvicini, B.A. Dolgoshein, M.O. Farber, M.I. Fradkin, V.Ya. Gecha, V.A. Kachanov, V.A. Kaplin, E.P. Mazets, A.L. Menshenin, P. Picozza, O.F. Prilutskii, V.G. Rodin, M.F. Runtso, P.Spillantini, S.I. Suchkov, N.P. Topchiev, A. Vacchi, Yu.T. Yurkin, N. Zampa, V.G. Zverev. The possibilities of simultaneous detection of gamma rays, cosmic-ray electrons and positrons on the GAMMA-400 space observatory. Astrophys. Space Sci. Trans., Vol. 7, pp. 75-78, 2011; Download, pdf, 200  б.
  • A.M. Galper, R.L. Aptekar, I.V. Arkhangelskaya, M. Boezio, V. Bonvicini, B.A. Dolgoshein, M.O. Farber, M.I. Fradkin, V.Ya. Gecha, V.A. Kachanov, V.A. Kaplin, E.P. Mazets, A.L. Menshenin, P. Picozza, O.F. Prilutskii, M.F. Runtso, P. Spillantini, S.I. Suchkov, N.P. Topchiev, A. Vacchi, Yu.T. Yurkin, N. Zampa, V.G. Zverev. GAMMA-400 Space Observatory. Il Nuovo Cimento, Vol. 34 C, No. 3, pp. 71-75, 2011; Download, pdf, 171  б.
  • A.M. Galper, O. Adriani, R.L. Aptekar, I.V. Arkhangelskaja, A.I. Arkhangelskiy, M. Boezio, V. Bonvicini, K.A. Boyarchuk, Yu.V. Gusakov, M.O. Farber, M.I. Fradkin, V.A. Kachanov, V.A. Kaplin, M.D. Kheymits, A.A. Leonov, F. Longo, P. Maestro, P. Marrocchesi, E.P. Mazets, E. Mocchiutti, A.A. Moiseev, N. Mori, I. Moskalenko, P.Yu. Naumov, P. Papini, P. Picozza, V.G. Rodin, M.F. Runtso, R. Sparvoli, P. Spillantini, S.I. Suchkov, M. Tavani, N.P. Topchiev, A. Vacchi, E. Vannuccini, Yu.T. Yurkin, N. Zampa, V.G. Zverev. Status of the GAMMA-400 Project. arXiv:1201.2490, 2012. Download, pdf, 114  б.
  • A.M. Galper, O. Adriani, R.L. Aptekar, I.V. Arkhangelskaja, A.I. Arkhangelskiy, M. Boezio, V. Bonvicini, K.A. Boyarchuk, M.I. Fradkin, Yu.V. Gusakov, V.A. Kaplin, V.A. Kachanov, M.D. Kheymits, A.A. Leonov, F. Longo, E.P. Mazets, P. Maestro, P. Marrocchesi, I.A. Mereminskiy, V.V. Mikhailov, A.A. Moiseev, E. Mocchiutti, N. Mori, I.V. Moskalenko, P.Yu. Naumov, P. Papini, P. Picozza, V.G. Rodin, M.F. Runtso, R. Sparvoli, P. Spillantini, S.I. Suchkov, M. Tavani, N.P. Topchiev, A. Vacchi, E. Vannuccini, Yu.T. Yurkin, N. Zampa, V.G. Zverev, V.N. Zirakashvil. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for the Dark Matter Searches. arXiv:1210.1457, 2012. Download, pdf, 359  б.

 

GAMMA-400


The GAMMA-400 gamma-ray telescope includes:

- top (ACtop) and lateral (AClat) anticoincidence detectors;

- converter-tracker (C), which represents 10 interleaved by tungsten (x, y) planes of silicon strip coordinate detectors with 0.1-mm pitch. The total thickness of the converter-tracker is 1.0 X0;

- time-of-flight system (TOF) of S1 and S2 scintillation detectors separated by the distance of 500 mm;

- position-sensitive calorimeter, consisting of 2 parts:

 (a) 2-layer imaging CC1. Each layer contains CsI(Tl) crystals and (x, y) planes of silicon strip coordinate detectors with 0.1-mm pitch. CC1 thickness is 2 X0.

 (b) electromagnetic CC2 from CsI(Tl). CC2 thickness is 23 X0.

- The total calorimeter (CC1 + CC2) thickness for the normal incidence particles is 25 X0 or ~1.1 λn. The total calorimeter thickness for the lateral incidence particles is ~54 X0 or ~2.6 λn.

- S3 and S4 scintillation detectors;

- lateral calorimeter detectors (LD);

- neutron detector (ND).

 

Additionally, the GAMMA-400 scientific complex includes

- the KONUS-FG gamma-ray burst monitor,

- star sensors;

- magnetometers.


GAMMA-400 scientific complex on the Navigator service module



Particle detection


Gamma-ray photons are converted into electron-positron pair in the converter-tracker, which then is detected in the telescope detectors. Anticoincidence detectors are used to identify the gamma rays, and the time-of-flight system determines the direction of the incident particles and forms the telescope aperture. Electromagnetic shower created by the electron-positron pair is developed and detected in two parts of the calorimeter and scintillation detectors S3 and S4.

Gamma rays are detected at the absence of a signal in AC, and electrons (positrons), when moving downward, are detected at the presence of a signal in AC. Moreover, electrons (positrons) are detected from lateral directions with the help of lateral calorimeter detectors (LD).

Using the calorimeter with thickness ~25 X0 extends the particle measurable energy range up to several TeV and increases the gamma-ray telescope energy resolution up to ~1% at energies more than 10 GeV. High angular resolution is achieved by determining the conversion point in the multilayer converter-tracker and the reconstruction of the shower axis in CC1. This method allows the high angular resolution of ~0.01° to be achieved at energies more than 100 GeV.

High-energy incident particles create a backsplash (upward moving products of the shower) in the calorimeter. To exclude the detection of the backsplash particles in AC and so manner creating self-veto, we use the method of separation of incident and backsplash particles in AC by the time of flight along with the segmentation of AC.

The proton rejection factor of ~106, critical parameter for the background rejection, will be achieved by using the calorimeter and the neutron detector with other telescope systems.

 

Table 1 shows the GAMMA-400 basic characteristics obtained at the first and second stages of the preliminary design (Phase A).

Table 2 shows a comparison of Fermi-LAT and GAMMA-400 parameters.

Table 3 shows a comparison of basic parameters of operated, existing, and planned space-based and ground-based instruments.

Table 1.

 

 

Phase A

(first stage)

2009-2010

Phase A

(second stage)

2011-2012

Phase A
(third stage)
2013-2014

Angular resolution

(Eγ > 100 GeV)

0.2°

~0.01°

~0.01∞

Energy resolution

(Eγ > 10 GeV)

~ 3%

~1%

~1%

Energy range

30-1000 GeV

0.1-3000 GeV

0.1-3000 GeV

 Sensitive area

0.44 m2

0.64 m2

1.0 m2

Mass

1700 kg

2600 kg

4100 kg

Power consumption

800 W

2000 W

2000 W

Telemetry downlink volume

500 Mbytes/day

100 Gbytes/day

100 Gbytes/day

Particles

gamma rays,

electrons + positrons, protons, nuclei

gamma rays,

electrons + positrons, protons, nuclei

gamma rays, electrons + positrons, protons, nuclei

 

Table 2.

 

 

Fermi-LAT

GAMMA-400

 Orbit

560 km

500-300000 km

 Energy range

100 MeV - 300 GeV

100 MeV - 3000 GeV

 Sensitive area

1.8 m2

1.0 m2

 Coordinate detectors

Si strips with pitch 0.23 mm

Si strips with pitch 0.1 mm

 Angular resolution

 (Eγ > 100 GeV)

~0.1°

~0.01°

 Calorimeter

 - thickness, r.l.

CsI(Tl)

8.5

CsI(Tl) + Si strips

~25

 Energy resolution

 (Eγ > 10 GeV)

~10%

~1%

 Proton rejection factor

104

~106

 Mass, kg

2900

4100

 Telemetry downlink volume, Gbytes/day

20

100

 

Table 3.

 

 

SPACE-BASED

GAMMA-RAY TELESCOPES

GROUND-BASED

GAMMA-RAY FACILITIES

 

EGRET

AGILE

Fermi-LAT

CALET

 

GAMMA-400

H.E.S.S.-II

MAGIC

VERITAS

CTA

 

USA

Italy

USA

Japan

RUSSIA

Namibia

Spain,

Canaries

USA,

Arizona

 

Energy range,

GeV

0.03-30

0.03-50

0.02-300

10-10000

0.1-3000

>30

>50

>100

>20

Angular

resolution

(Eγ > 100 GeV)

0.2º

(Eγ~0.5 GeV)

0.1º

(Eγ~1 GeV)

0.1º

0.1º

~0.01º

0,07º

0,07º

(Eγ=300 GeV)

0,1º

0,1º

(Eγ=100 GeV)

0,03º

(Eγ=10 TeV)

Energy resolution

(Eγ > 100 GeV)

15%

(Eγ~0.5 GeV)

50%

(Eγ~1 GeV)

10%

2%

~1%

15%

20%

(Eγ=100 GeV)

15%

(Eγ=10 TeV)

15%

20%

(Eγ=100 GeV)

5%

(Eγ=10 TeV)

 
Comparison of the energy and angular resolutions for GAMMA-400, Fermi-LAT, CTA, H.E.S.S., HAWC using the figure from S. Funk, et al. for the CTA Consortium, Astroparticle Phys., 2013, 43, 348.

 

GAMMA-400 spacecraft

 



The GAMMA-400 spacecraft launching scheme.

 

The GAMMA-400 spacecraft and Navigator service module are designed by Lavochkin Association.

The GAMMA-400 scientific complex is installed on the Navigator service module.

The initial parameters of the highly elliptic orbit:

an apogee is 300000 km, a perigee is 500 km, orbital period is 7 days, an inclination angle is 51.8°.

The GAMMA-400 lifetime is 10 years.