

New generation highenergy space observatory GAMMA-400

Nikolay Topchiev for the GAMMA-400 Collaboration

THE 40th COSPAR SCIENTIFIC ASSEMBLY, AUGUST 2-10, 2014, Moscow, RUSSIA

GAMMA-400 TEAM

A.M. Galper^{a, b}, V. Bonvicini^c, N.P. Topchiev^a, O. Adriani^d, R.L. Aptekar^e, I.V. Arkhangelskaja^b, A.I. Arkhangelskiy^b,
L. Bergstrom^f, E. Berti^d, G. Bigongiari^g, S.G. Bobkov^h, M. Boezio^c, E.A. Bogomolov^e, S. Bonechi^g, M. Bongi^d,
S. Bottai^d, K.A. Boyarchukⁱ, G. Castellini^j, P.W. Cattaneo^k, P. Cumani^c, G.L. Dedenko^b, C. De Donato¹, V.A. Dogiel^a,
Ch. Fuglesang^m, M.S. Gorbunov^h, Yu.V. Gusakov^a, B.I. Hnatykⁿ, V.V. Kadilin^b, V.A. Kaplin^b, A.A. Kaplun^b,
M.D. Kheymits^b, V.E. Korepanov^o, J. Larsson^m, A.A. Leonov^b, V.A. Loginov^b, F. Longo^c, P. Maestro^g, P.S. Marrocchesi^g,
V.V. Mikhailov^b, E. Mocchiutti^c, A.A. Moiseev^p, N. Mori^d, I.V. Moskalenko^q, P.Yu. Naumov^b, P. Papini^d, M. Pearce^m,
P. Picozza^l, A.V. Popov^h, A. Rappoldi^k, S. Ricciarini^j, M.F. Runtso^b, F. Ryde^m, O.V. Serdin^h, R. Sparvoli^l, P. Spillantini^d,
S.I. Suchkov^a, M. Tavani^r, A.A. Taraskin^b, A. Tiberio^d, E.M. Tyurin^b, M.V. Ulanov^e, A. Vacchi^c, E. Vannuccini^d,
G.I. Vasilyev^e, Yu.T. Yurkin^b, N. Zampa^c, V.N. Zirakashvili^s, and V.G. Zverev^b

^a Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia

- ^d Istituto Nazionale di Fisica Nucleare, Sezione di Firenze and Physics Department of University of Florence, Firenze, Italy
- ^e Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia
- ^f Stockholm University, Department of Physics; and the Oskar Klein Centre, AlbaNova University Center, Stockholm, Sweden
- ^g Department of Physical Sciences, Earth and Environment, University of Siena and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy
- ^h Scientific Research Institute for System Analysis, Russian Academy of Sciences, Moscow, Russia
- ⁱ Research Institute for Electromechanics, Istra, Moscow region, Russia
- ^j Istituto di Fisica Applicata Nello Carrara CNR and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Firenze, Italy
- ^k Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
- ¹ Istituto Nazionale di Fisica Nucleare, Sezione di Roma 2 and Physics Department of University of Rome Tor Vergata, **Rome, Italy**
- ^m KTH Royal Institute of Technology, Department of Physics; and the Oskar Klein Centre, AlbaNova University Center, Stockholm, Sweden
- ⁿ Taras Shevchenko National University of Kyiv, **Kyiv**, **Ukraine**
- ° Lviv Center of Institute of Space Research, Lviv, Ukraine
- ^p CRESST/GSFC and University of Maryland, College Park, Maryland, USA
- ^q Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, USA
- ^r Istituto Nazionale di Astrofisica IASF and Physics Department of University of Rome Tor Vergata, Rome, Italy
- ^s Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Troitsk, Moscow region, Russia

^b National Research Nuclear University MEPhI, Moscow, Russia

^c Istituto Nazionale di Fisica Nucleare, Sezione di Trieste and Physics Department of University of Trieste, **Trieste, Italy**

Russian Space Missions for Fundamental Physics in the different EM ranges

Russian Space Missions with gamma-ray telescopes

Anna-3 (USSR) (Kosmos - 251, 264) 1968, 1969 200 MeV – 1 GeV GAMMA-1 (USSR) 1990 – 1992 30 MeV – 5 GeV CORONAS-PHOTON (Russia) 2009 300 MeV – 2 GeV **International Space Missions** with gamma-ray telescopes

COS-B (USA) 1975-1982 30 MeV – 5 GeV

EGRET (USA) 1991- 1998 30 МэВ - 30 ГэВ

AGILE (Italy) 2007 100 MeV – 50 GeV

FERMI (USA) 2008 20 MeV – 300 GeV

Some historical remarks on GAMMA-400

<u>First ideas and first publications were presented in:</u> 1987 on Moscow 20th ICRC 1988 in Space Science Reviews, 49, 215

After operation of the US gamma-ray telescope COS-B (1975-1982, $E_{\gamma max} = 5 \text{ GeV}$) and before operation of the Russian GAMMA-1 (1990-1992, $E_{\gamma max} = 5 \text{ GeV}$) and US EGRET (1991-2000, $E_{\gamma max} = 30 \text{ GeV}$).

GAMMA-400 means Gamma Astronomical Multifunctional Modular Apparatus with the maximum gamma-ray energy of 400 GeV. In 1990's, the range from 30 GeV up to 400 GeV was unexplored.

GAMMA-400 research works funded by Roscosmos began in 2000 and design and development works began only in 2009.

Vitaly Ginzburg

Lidiya Kurnosova

Arkadiy Galper

The GAMMA-400 founders were the Nobel laureate academician Vitaly Ginzburg (LPI) and professor Lidiya Kurnosova (LPI), which initiated the GAMMA-400 project in Russia to search for dark matter particles using the gamma-ray astronomy methods. Since 2009, professor Arkadiy Galper is the GAMMA-400 Principal Investigator.

GAMMA-400 SCIENTIFIC GOALS

The GAMMA-400 main scientific goals are: study of the origin of the dark matter by means of gamma-ray astronomy; precise measurements of Galactic and extragalactic discrete astrophysical sources; research of high-energy gamma-ray bursts; research of high energy electron + positron fluxes; research of high-energy nuclei fluxes.

GAMMA-400 GAMMA-RAY TELESCOPE

GAMMA-400 is optimized for the energy 100 GeV with the best parameters: the angular resolution $\sim 0.01^{\circ}$, the energy resolution $\sim 1\%$, and the proton rejection factor $\sim 10^6$, but is able to measure gamma-ray and electron + positron fluxes in the energy range from 100 MeV to 10 TeV, as well as high-energy nuclei fluxes. The GAMMA-400 effective area is ~4000 cm² at $E_{\gamma} > 1$ GeV, the total mass is 4100 kg, the power consumption is ~2000 W, and a telemetry downlink capability is 100 GB/day. Together with the gamma-ray telescope GAMMA-400, the space observatory will include two star sensors for determining the GAMMA-400 axes with accuracy of approximately 5", two magnetometers, and the KONUS-FG gamma-ray burst monitor. At present we finished preliminary design and this year we have to

finish technical project, including the creation of the GAMMA-400 laboratory prototype. Next year we have to start the stage of working design documentation.

THE GAMMA-400 SPACECRAFT LAUNCHING SCHEME

The GAMMA-400 project is included in the Russian Federal Space Program 2009-2015 and in the new planned Russian Federal Space Program 2016-2025 and is funded by the Russian Space Agency. The launch of the GAMMA-400 space observatory is scheduled in about 2021 using the powerful Proton launch vehicle + Briz booster. The expected mission duration is more than 7 years.

THE GAMMA-400 ORBIT EVOLUTION AND OBSERVATION MODES

The orbit will have the following initial parameters: -an apogee of 300 000 km: -a perigee of 500 km; -an inclination of 51.4° and will be without the Earth's occultation

> The main observation modes are: -long-duration (~100 days) observations of the Galactic Center and extended gamma-ray sources; -monitoring of the celestial sphere.

Under the action of gravitational disturbances of the Sun, Moon, and the Earth after ~ 6 months the orbit will transform to about circular with a radius of $\sim 200\ 000$ km.

GAMMA-400 gamma-ray telescope physical scheme

Comparison of the main parameters for GAMMA-400 and Fermi-LAT

	Fermi-LAT	GAMMA-400
Orbit	circular, 565 km	high-elliptical, 500-300000 km (without the Earth's occultation)
Energy range	20 MeV - 300 GeV	100 MeV – 10 000 GeV
Effective area ($E_{\gamma} > 1 \text{ GeV}$)	~8000 cm ²	~4000 cm ²
Coordinate detectors	Si strips (pitch 0.23 mm)	Si strips (pitch 0.1 mm)
Angular resolution $(E_{\gamma} > 100 \text{ GeV})$	~0.1°	~0.01°
Calorimeter - thickness	CsI ~8.5X ₀	CsI(Tl)+Si strips ~25X ₀
Energy resolution ($E_{\gamma} > 100 \text{ GeV}$)	~10%	~1%
Proton rejection coefficient	~10 ⁴	~10 ⁶
Mass	2800 kg	4100 kg
Telemetry downlink capability	15 GB/day	100 GB/day

Energy resolution vs. energy for normal incidence for Fermi-LAT and GAMMA-400

Angular resolution vs. energy for Fermi-LAT (for normal incidence) and GAMMA-400 (for θ=0°-15°)

THE GALACTIC CENTER IS THE MAIN GAMMA-400 GOAL TO SEARCH FOR DARK MATTER

Galactic center of Milky Way (b < 1°, l < 1°) is the unusual, very interesting place, where the main directions of the Universe investigations are crossed: cosmology, relativistic astrophysics, extension of the standard model of high-energy physics (dark matter), processes of particle acceleration up to 10^{18-20} eV, etc.

The high-energy gamma-ray observation (> 1 GeV) gives the unique information on the existence of supermassive black hole and accordingly accretion disc, which possibly consisting from dark matter. At present, they are one point object, but, from accretion disc, linear gamma rays from self-annihilation and decay dark matter particles should be observed.

In order to resolve this linear gamma-ray emission on the background of other emission sources in the Galactic center it is necessary to have very high angular and energy resolutions. The GAMMA-400 gamma-ray telescope has both the best angular and energy resolutions.

Demonstration of the GAMMA-400 angular resolution possibility

Background: Integrated intensity map of the NH₃ (1,1) emission (1.2652 cm wavelength) from [arXiv:1402.4531]. Circles: point spread functions for Fermi/LAT (outer: 0.1° or 15 pc) and GAMMA-400 (inner: 0.01° or 1.5 pc) at E_γ ~ 100 GeV.

Demonstration of the GAMMA-400 energy resolution possibility

PHYSICAL REVIEW D 86, 103514 (2012)

130 GeV fingerprint of right-handed neutrino dark matter

Lars Bergström*

COMPARISON OF BASIC PARAMETERS OF OPERATED, EXISTING, AND PLANNED SPACE-BASED AND GROUND-BASED INSTRUMENTS

	SPA	CE-BAS	ED INS	STRUME	GROUND-BASED GAMMA-RAY						
			-		FACILITIES						
	EGRET	AGILE	Fermi-	CALET	GAMMA-	H.E.S.S	MAGIC	VERITAS	СТА		
			LAT		400	II					
Operation	1991-	2007-	2008-	2014	~2021	2012-	2009-	2007-	2018		
period	2000										
Energy	0.03-30	0.03-50	0.02-	10-	0.1-	> 30	> 50	> 100	> 20		
range,			300	10000	10000						
GeV											
Angular	0.2°	0.1°	0.1°	0.1°	~0.01°	0.07°	0.07°	0.1°	0.1°		
resolution	(E ₇ ~0.5 GeV)	(E _γ ~1 GeV)					$(E_{\gamma} = 300 \text{ GeV})$		$(E_{\gamma} = 100 \text{ GeV})$		
$(E_{\gamma} > 100)$									0.03°		
GeV)									$(L_{\gamma} = 10 \text{ feV})$		
Energy	15%	50%	10%	2%	~1%	15%	20%	15%	20%		
resolution	(E ₇ ~0.5 GeV)	(E _γ ~1 GeV)					$(E_{\gamma} = 100 \text{ GeV})$		$(E_{\gamma} = 100 \text{ GeV})$		
$(E_{\gamma} > 100)$							15%		5%		
GeV)							$(\mathbf{E}_{\gamma} - 1 1 \mathbf{e} \mathbf{v})$		$(L_{\gamma} = 10 \ 10^{\circ})$		

GAMMA-400 fields of view for gamma rays, electrons + positrons, and nuclei

Electron Spectrum

Electron count estimation

Experiment	Duration	GF (m² sr)	Calo σ(E)/ E	Calo depth	e/p rejection factor	E>0.5 TeV	E>1 TeV	E>2 TeV	E>4 TeV
CALET	5 y	0.12	~2%	30 X ₀	10 ⁵	7982	1527	238	25
AMS02	10 y	0.5	~2%	16 X ₀	10 ³	66515	12726	1986	211
ATIC	30 d	0.25	~2%	18 X ₀	104	273	52	8	1
FERMI	10 y	1.6 @ 300 GeV 0.6@ 800 GeV	~15%	8.6 X ₀	104	59864	6362	NA	NA
G400	10 y	3.9	~ 1%	25.4 X ₀	105	518819	99266	15488	1647

p and He count estimation

V

Experiment Durat	Duration	GF (m² sr)	Calo σ(E)/	Calo depth	ε sel	E>0.1 PeV		E>0.5 PeV		E>1 PeV		E>2 PeV		E>4 PeV	
						р	Не	р	Не	р	Не	р	Не	р	Не
CALET	5 y	0.12	~40%	30 Χ _。 1.3 λ _。	0.8	292	276	17	19	5	6	1	2	0	0
CREAM	180 d	0.43	~45%	20 Χ _。 1.2 λ _。	0.8	103	97	6	7	2	2	0	1	0	0
ATIC	30 d	0.25	~37%	18 Χ _。 1.6 λ _。	0.8	10	9	1	1	0	0	0	0	0	0
G400	10 y	3.9	~ 35%	25.4 Χ _。 1.2 λ _。	0.8	18951	17921	1123	1242	300	374	69	106	11	24

Nuclei count estimation

~	kn	e	е
---	----	---	---

ᡟ

													,		
Experiment D		GF (m² sr)	Calo	Calo depth	εsel	E>0.1 PeV		E>0.5 PeV		E>1 PeV		E>2 PeV		E> 4 PeV	
	Duration		σ(E)/E			³ Li to ⁹ F	¹⁰ Ne to ²⁴ Cr	³ Li to ⁹ F	¹⁰ Ne to ²⁴ Cr	³ Li to ⁹ F	¹⁰ N e to ²⁴ Cr	³ Li to ⁹ F	¹⁰ Ne to ²⁴ Cr	³ Li to ⁹ F	¹⁰ Ne to ²⁴ Cr
CALET	5 y	0.12	~30%	30 Χ _。 1.3 λ _。	0.8	136	140	9	10	3	3	1	1	0	0
CREAM	10 y	0.46	~45%	20 Χ _。 1.2 λ _。	0.8	51	53	4	4	1	1	0	0	0	0
ATIC	30 d	0.25	~37%	18 Χ _。 1.6 λ _。	0.8	5	5	0	0	0	0	0	0	0	0
TRACER	30 d	5	-	TRD	0.8	93	96	6	7	2	2	1	1	0	0
G400	10 y	3.9	~40%	25.4 Χ ₀ 1.2 λ ₀	0.8	8830	9073	612	636	193	206	58	69	17	20

Conclusion

- The GAMMA-400 mission represents a unique opportunity to perform simultaneous measurements of gamma rays, electrons, and nuclei with unprecedented accuracy. The GAMMA-400 space observatory is scheduled to launch in about 2021.
- GAMMA-400 will provide in-depth investigations on some of the most challenging physics items, such as:
 - DM search in γ and high-energy electron spectra;
 - CR origin, production and acceleration to the highest energies.