Presented by A.A. Leonov on behalf of Project Manager and Chief Designer N.P. Topchiev The GAMMA-400 Space Mission for Measuring High-Energy Gamma Rays and Cosmic Rays

GAMMA-400 collaboration

A.M. Galper^{a,b}, V. Bonvicini^c, N.P. Topchiev^a, O. Adriani^d, R.L. Aptekar^e, I.V. Arkhangelskaya^b, A.I. Arkhangelskiy^b,
A.V. Bakaldin^b, L. Bergstrom^f, E. Berti^d, G. Bigongiari^g, S.G. Bobkov^h, M. Boezio^c, E.A. Bogomolov^e, S. Bonechi^g,
M. Bongi^d, S. Bottai^d, G. Castelliniⁱ, P.W. Cattaneo^j, P. Cumani^c, O.D. Dalkarov^a, G.L. Dedenko^b, C. De Donato^k,
V.A. Dogiel^a, N. Finetti^d, M.S. Gorbunov^h, Yu.V. Gusakov^a, B.I. Hnatyk¹, V.V. Kadilin^b, V.A. Kaplin^b, A.A. Kaplun^b,
M.D. Kheymits^b, V.E. Korepanov^m, J. Larssonⁿ, A.A. Leonov^{a,b}, V.A. Loginov^b, F. Longo^c, P. Maestro^g, P.S. Marrocchesi^g,
A.L. Men'shenin^o, V.V. Mikhailov^b, E. Mocchiutti^c, A.A. Moiseev^p, N. Mori^d, I.V. Moskalenko^q, P.Yu. Naumov^b, P. Papini^d,
M. Pearceⁿ, P. Picozza^k, A. Rappoldi^j, S. Ricciariniⁱ, M.F. Runtso^b, F. Rydeⁿ, O.V. Serdin^h, R. Sparvoli^k, P. Spillantini^d,
Yu.I. Stozhkov^a, S.I. Suchkov^a, A.A. Taraskin^b, M. Tavani^r, A. Tiberio^d, E.M. Tyurin^b, M.V. Ulanov^e, A. Vacchi^c,
E. Vannuccini^d, G.I. Vasilyev^e, Yu.T. Yurkin^b, N. Zampa^c, V.N. Zirakashvili^s and V.G. Zverev^b

^aLebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia

^bNational Research Nuclear University MEPhI, Moscow, Russia

^cIstituto Nazionale di Fisica Nucleare, Sezione di Trieste and Physics Department of University of Trieste, Trieste, Italy ^dIstituto Nazionale di Fisica Nucleare, Sezione di Firenze and Physics Department of University of Florence, Firenze, Italy

eIoffe Institute, Russian Academy of Sciences, St. Petersburg, Russia

^fStockholm University, Department of Physics; and the Oskar Klein Centre, AlbaNova University Center, Stockholm, Sweden ^gDepartment of Physical Sciences, Earth and Environment, University of Siena and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy ^bScientifia Research Institute for System Analysis, Pussion Academy of Sciences, Moscow, Pussio

^hScientific Research Institute for System Analysis, Russian Academy of Sciences, Moscow, Russia

ⁱIstituto di Fisica Applicata Nello Carrara - CNR and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Firenze, Italy

^jIstituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy

^kIstituto Nazionale di Fisica Nucleare, Sezione di Roma 2 and Physics Department of University of Rome Tor Vergata, Rome, Italy ^ITaras Shevchenko National University of Kyiv, Kyiv, Ukraine

°Research Institute for Electromechanics, Istra, Moscow region, Russia

^mLviv Center of Institute of Space Research, Lviv, Ukraine

ⁿKTH Royal Institute of Technology, Department of Physics; and the Oskar Klein Centre, AlbaNova University Center, Stockholm, Sweden ^pCRESST/GSFC and University of Maryland, College Park, Maryland, USA

^qHansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, USA ^rIstituto Nazionale di Astrofisica IASF and Physics Department of University of Rome Tor Vergata, Rome, Italy

^sPushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Troitsk, Moscow region, Russia

1. Scientific goals

1.1 Gamma-ray astronomy

1.2 HE cosmic rays

2. GAMMA-400 simulation environment

3. GAMMA-400 performance

- 3.1 Gamma Effective area Acceptance Energy resolution Angular resolution 3.2 Separation of electrons and protons 3.3 Protons and nuclei Calorimeter performance
- 4. Identification of high-energy (>10 GeV) gamma-ray source form (GAMMA-400, Fermi-LAT)
- 5. Conclusion

The current generation of gamma-ray space experiments with the advent of solid-state Silicon detector technology: AGILE-GRID (Gamma-Ray Imaging Detector) – launch 2007, FERMI LAT (Large Area Telescope) – launch 2008. (arXiv:1507.01475v1 [astro-ph.HE] 6 Jul 2015)

Future gamma-ray mission:

GAMMA-400 – launch ~2023-2025,

Last GAMMA-400 workshop, 29-30th June, 2015, Barcelona (CIEMAT, ICCUB) GAMMA-LIGHT – ???.

(Nuclear Physics B (Proc. Suppl.) 239–240, 193–198, 2014)

	Energy range, GeV	Angular resolution (68%)							
		100 MeV	10 GeV	100 GeV					
AGILE	0.05÷10	4 ⁰	0.2 ⁰	-					
FERMI (total)	0.2-300	5 ⁰	0.2 ⁰	0.13 ⁰					
GAMMA-400	0.02÷3000	2.5 ⁰	0.1 ⁰	0.017 ⁰					
GAMMA-LIGHT	0.05÷10	~1.5 ⁰	0.1 ⁰	-					

Scientific goals

Physics goals for total telescope acceptance (~4200 cm² sr)

1.1 The features in the energy spectra of high energy γ -ray emissions from discrete and extended sources associated with particles of dark matter

1.2 The variability of high energy γ -ray emissions from discrete sources in order to clarify the nature of particle acceleration in such sources

1.3 γ-ray bursts, including high-energy bursts

1.4 high-energy γ -ray emissions, fluxes of electrons and positrons, and nuclei in solar flares

Physics goals for calorimeter only acceptance (~4 m² sr)

2.1 HE e+, e- from Dark Mater annihilation

2.2 HE e+, e- acceleration mechanisms

2.3 HE protons and nuclei (>>GeV)

PAMELA has revealed a break in proton and He spectrum (different slope) the knee of proton and helium

the spectral hardening of nuclei (E>TeV)

2.4 CR propagtion in the Galaxy

Gamma Production

Indirect search for dark matter in y-ray and cosmic ray radiations

GAMMA-400 will conduct the search in the phase space of γ -rays with E > ~1 GeV and electron + positron spectrum above ~10 GeV.

General Approach: Search for disagreement / difference between observed and predicted by "classical" model CR / γ -ray flux / spectra / spatial distribution

The sensitivities to a DM signal depend critically on accurate estimates of the backgrounds: diffuse γ-rays, γ- rays from astrophysical sources, and charged particles detected as γ-rays

Alexander Moiseev 2013 ICRC Rio de Janeiro

14th Marcel Grossmann Meeting, Rome, July 12-18, 2015

4

GAMMA-400 will be launched in highly elliptical orbit (500–300000 km) with an inclination angle of 51.8° . The initial orbit, after some months, evolves to a very high circular orbit (100.000 - 200.000 km) with an orbital period of about 7 days.

GAMMA-400 is less as survey and more as "pointing telescope" (without occultation of the Earth).

GAMMA-400 gamma-ray telescope simulation environment GEANT4 (4.9.4p02) GLAST physical list

GAMMA-400 instrument layers

GAMMA-400 instrument layers

Magnified view of the top part

GAMMA-400 performance

Effective area for vertical gamma.

$$S_{EFF}(\theta) = \frac{N_{DET}}{N_0} \times S$$

 $S_{EFF}(\theta) = \frac{N_{DET}}{N_0} \times S \times \cos \theta$ 4000 Effective area, cm^2 10000 2000 - trigger: 1000 (S1 before S2) && (no AC signal) cm^2 E=100 GeV 100 0 Ŧ geometrical 0,1 100 0,01 10 1000 trigger: E,, GeV (S1 before S2) && (no AC signal) Ŧ 10 15 20 25 30 35 40 45 50 55 60 65 70 0 5 10

degr.

Effective area as a function of 100 GeV

gamma incidence angle.

Angular resolution

--- FERMI total (http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm)

MEDIAN method, gamma > 1 GeV

For each silicon-strip layer with energy release the distribution of the sum of energy deposited in strips is constructed.

The horizontal line is median, which is calculated as a half sum of the extreme points for constructed distribution.

The intersection point of median with piecewise continuous distribution gives the estimation of median energy location in silicon-strip layer.

To find the energy weight of the median the ordinary distribution of energy releases in strips is built.

The median energy weight is defined using the obtained median location on the piece line linking adjacent (respective median location) points of the obtained distribution.

The estimation of the initial direction is obtained using fitting procedure for the median locations in silicon-strip layers. Around the estimated direction the corridor from strips is constructed. The energy releases in strips outside the corridor are ignored. After that the iteration procedure starts, narrowing the corridor from strips in each silicon-strip layer, but not less, then 200 μ m.

Angular resolution > 1 GeV

Step 1: From the radius of track the pair component energies E_R and E_L are restored. Step 2: Coordinate of $X_{L(W)}$ on conversion plate is restored from $X_{L(0)}$, $X_{L(1)}$, $X_{L(2)}$ and E_L . Step 3: Coordinate of $X_{R(W)}$ on conversion plate is restored from $X_{R(0)}$, $X_{R(1)}$, $X_{R(2)}$ and E_R . Step 4: Calculate middle point coordinate: $X_{conv} = X_{R(W)} \times (E_R/(E_L + E_R) + X_{L(W)} \times E_L/(E_L + E_R))$. Step 5: Repeat the steps 2, 3, 4 for $(X_{conv}, X_{R(0)}, X_{R(1)})$ and $(X_{conv}, X_{L(0)}, X_{L(1)})$. Step 6: Calculate angles $\alpha_R(X_{conv}, X_{R(0)}, X_{R(1)})$ and $\alpha_L(X_{conv}, X_{L(0)}, X_{L(1)})$. Step 7: Calculate 'weighted' plane angle $\alpha = \alpha_R \times E_R/(E_L + E_R) + \alpha_L \times E_L/(E_L + E_R)$.

Relations of plane angles α_x and α_y with polar angle θ and azimuth angle φ :

$$\tan^2 \theta = \tan^2 \alpha_x + \tan^2 \alpha_y$$
$$\tan \phi = \tan \alpha_y / \tan \alpha_x$$

The main influence on the angular resolution provides the thickness of first converter layer from tungsten, in which gamma conversion occurs. The investigation was done to look for the optimal thickness in the configuration of converter planes.

The configurations under study are the following:

CFRP+AI honeycomb+Si ~ 0.013 X₀

Improvement of low energy angular resolution Extension of energy range to 20 MeV

Separation of electrons and protons

The materials were accepted for publication in ASR

(Reference: JASR 12330, DOI: http://dx.doi.org/10.1016/j.asr.2015.06.040)

To reject protons from electrons, information from ND, S4, S3, S2, CC1, and CC2 is used.

Every detector is considered as a "separate layer of a composite calorimeter", and the ability of each layer to decrease the proton contamination in the different energy region is investigated individually.

The rejection factor at 100 GeV is calculated as the ratio of the number of initial protons with energy more than 100 GeV - assuming that the proton energy spectrum power-index is -2.7 - to the number of events identified as electrons with energy 100 ± 2 GeV (taking into account that the GAMMA-400 energy resolution is equal to about 2%).

The cutoffs are determined in such a way to retain 98% of electrons.

In total, 25 cutoffs are used to reject protons.

Taking into account this selection, roughly 30% of electrons are also lost due to proton rejection.

Intrinsic proton rejection factor for each detector taken individually, and the value of the decrease of the total rejection factor in case of elimination of a given detector from the analysis.

Detector, number of cutoffs	Intrinsic rejection factor	Decrease of the total			
		rejection factor			
S4 (2 cutoffs: 1 cutoff for each scintillation layer)	100	1.7			
CC2 (2 cutoffs)	30	2.6			
Strips in CC1 (4 cutoffs: 2 cutoffs for each X or Y silicon	6	1.2			
strip)					
CsI(Tl) from CC1 (2 cutoffs: 1 cutoff for each layer of	3	1.3			
CsI(Tl) crystal)					
S2, S3 (4 cutoffs: 2 cutoffs for each detector)	2	1.3			
ND (1 cutoff)	400 (upper limit)	2			

Total rejection factor to separate protons from electrons in energy range from 50 GeV to 1 TeV.

Energy, GeV	Total rejection factor				
50	$(12.8\pm2)\times10^{5}$				
100	$(4.0\pm0.4)\times10^5$				
200	$(5.0\pm0.7)\times10^5$				
1000	(4.1±0.7)×10 ⁵				

GAMMA-400 only calorimeter CC2 (CsI(Tl)) performance

N×N×N cubes	28×28×12
L	3.6 cm
Size	1×1×0.47 m ³
X_0	54.6×54.6×23.4
λ_{I}	2.5×2.5×1.1
Mass	1683 kg

Protons and Helium (Polygonato model)												
Effective GF (m ² sr)	σ(E)/E	E>0.1	l PeV	E>0.5 PeV		E>1 PeV		E>2	PeV	E>4 PeV		
		р	He	р	He	р	He	р	He	р	He	
~4	35%	7.8×10 ³	7.4×10 ³	4.6×10 ²	5.1×10 ²	1.2×10 ²	1.5×10 ²	28	43	5	10	

Expected number of proton and helium events in 10 years data taking, according to the Polygonato model

Calorimeter only proton energy resolution

Nuclei energy resolution

Calorimeter only angular resolution (gamma 100 GeV)

68% containment: 1.7⁰±0.2⁰ (Elena Vannuccini, INFN, Florence)

For HE (>1 TeV) protons and nuclei with 68% containment ~3^o (Sergio Bottai, INFN, Florence)

 $\sim 51~000~\gamma$ at E > 50~GeV, $\sim 18~000~\gamma$ at E > 100~GeV, $\sim 2000~\gamma$ at E > 500~GeV

the sky > 50 GeV

∳*ermi*

=> ~ 1 γ per square degree

Preliminary

e reasonable angular resolution: 1 σ = 0.1°

Number of gamma from diffuse flux near Galactic center (1 deg. × 1 deg.) during 1 year of GAMMA-400 measurements.

Energy range, GeV	Number of gamma
10÷100	609
30÷100	103
50÷100	30
70÷100	16
100÷300	22

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

1 year: Number of gamma from CRAB (1 FHL) neighborhood, 30 deg. × 30 deg.

	name(Y)	Long(Y)	LAT(Y)	gamma(Y)	F1030(Y)	N1030year(Y)	F30100(Y)	N30100year(Y)	F100500(Y)	N100500year(Y)
Long Name	1									
Units										
Comments										
Sparklines	8									
1	J0433.5+2905	170,5183	-12,6225	2,284	1,83197E-10	40	4,50988E-11	10	8,93355E-12	2
2	J0509.5+0542	195,4068	-19,5947	2,3122	3,36993E-10	74	1,32972E-10	29	1,32326E-11	3
3	J0515.9+1528	187,7041	-13,0348	2,0998	7,14822E-11	16	4,51862E-11	10	0	0
4	J0521.7+2113	183,6034	-8,6989	1,975	6,0817E-10	134	2,66758E-10	59	7,54143E-11	17
5	J0529.0+0937	194,5459	-13,4366	1,8668	5,87924E-11	13	2,46635E-11	5	7,35643E-12	2
6	i J0534.5+2201	184,5515	-5,7856	2,3251	5,7145E-9	1261	1,35225E-9	299	3,83584E-10	85
7	J0601.0+3838	173,197	7,6461	1,3798	2,88338E-12	1	3,06052E-11	7	1,1627E-11	3
8	J0605.4+2726	183,4875	3,0152	1,9993	4,74008E-11	10	2,0574E-11	5	0	0
9	J0617.2+2234e	189,0481	3,0337	2,5587	2,57071E-9	567	4,71354E-10	104	1,17347E-10	26
10	J0622.9+3328	179,9088	9,1683	2,2901	2,87228E-10	63	6,45309E-11	14	0	0
11	J0633.9+1746	195,1354	4,2716	4,9967	2,69728E-9	595	3,74084E-11	8	0	0
12	J0648.9+1516	198,9922	6,3542	1,7296	1,51348E-10	33	3,81173E-11	8	2,63461E-11	6
13	J0650.4+2056	194,0331	9,1785	2,1553	7,01525E-11	15	0	0	1,27021E-11	3
14		1941 - C	100					(12)		(144) (144)
15	СУММА					2826		558		145
16	i									
17	r									
18	1									
19	1									
20)									
21										
22	2									
23	}									
24										
25	i									
26	ì									
27										
28	}									
29	1									
30)									
31										
32	2									

1 year: Number of gamma from VELA (1 FHL) neighborhood, 30 deg. × 30 deg.

	name(Y)	Long(Y)	LAT(Y)	gamma(Y)	F1030(Y)	N1030year(Y)	F30100(Y)	N30100year(Y)	F100500(Y)	N100500year(Y)
Long Name										
Units										
Comments		,								
Sparklines										
1	J0718.7-4321	254,9564	-13,6576	2,4388	2,21977E-10	49	3,04927E-11	7	0	0
2	J0746.3-4757	261,3524	-11,3701	2,8377	1,30728E-10	29	0	0	1,10816E-11	2
3	J0822.6-4250e	260,3176	-3,2763	2,1399	2,93955E-10	65	1,15512E-10	25	1,5446E-11	3
4	J0833.1-4511e	263,3324	-3,106	2,7099	7,20484E-10	159	1,23507E-10	27	2,46924E-11	5
5	J0835.3-4510	263,5503	-2,7921	4,4792	9,63061E-9	2126	1,89385E-10	42	5,90132E-12	1
6	J0841.2-3556	256,8822	3,6885	2,3535	1,28532E-10	28	2,95141E-11	7	0	0
7	J0845.8-5553	273,1218	-7,9728	2,1417	5,33615E-11	12	1,48016E-11	3	1,08975E-11	2
8	J0852.7-4631e	266,4913	-1,233	1,7659	6,91791E-10	153	4,0703E-10	90	1,19312E-10	26
9	J0852.9-3656	259,1471	4,9197	1,9625	3,99433E-11	9	3,52297E-11	8	0	0
10	J0928.1-5252	275,0193	-1,3858	2,1631	1,0891E-10	24	3,24261E-11	7	0	0
11	J1023.9-4337	276,6036	11,5849	2,3918	1,31876E-10	29	7,37344E-11	16	0	0
12										(.)
13	СУММА					2683		232		41
14										
15										
16	i 1									
17										
18										
19										
20										
21										
22										
23										
24										
25	1									
26									î	
27										
28										
29										
30										
31										

Initial circle distribution for supernova remnant IC 433 statistic

14th Marcel Grossmann Meeting, Rome, July 12-18, 2015

FERMI > 10.0 GeV

FERMI > 3.0 GeV

2 point sources (distance 0.05°) to distinguish

2 point sources (distance 0.05°) to distinguish

FERMI > 30.0 GeV

Conclusion

Werner Hofmann (CTA Spokesperson, private communications):

One of our worries in terms of maximising the science output of CTA is the coverage of the GeV domain - that is crucial for interpretation of sources - after the termination of Fermi. Obviously, GAMMA-400 is very well suited to fill that gap, and joint observations or joint projects seem very natural

- Scientifically, a precise, long duration experiment in space as GAMMA-400 will provide fundamental information with gamma rays and will allow to extend the range of direct measurements of cosmic rays beyond the TeV range
- The GAMMA-400 space observatory is scheduled to launch in about 2023-2025

Thanks for your attention

Spare slides

Nuclei count estimation

~knee

													V		
Experiment		GF	Calo	Calo		E>0.1 PeV		E>0.5 PeV		E>1 PeV		E>2 PeV		E> 4 PeV	
Experiment	Duration	(m² sr)	σ(E)/E)/E depth	depth εsei	³ Li to ⁹ F	¹⁰ Ne to ²⁴ Cr	³ Li to ⁹ F	¹⁰ Ne to ²⁴ Cr	³ Li to ⁹ F	¹⁰ N e to ²⁴ Cr	³ Li to ⁹ F	¹⁰ Ne to ²⁴ Cr	³ Li to ⁹ F	¹⁰ Ne to ²⁴ Cr
CALET	5 y	0.12	~30%	30 Χ ₀ 1.3 λ ₀	0.8	136	140	9	10	3	3	1	1	0	0
CREAM	10 y	0.46	~45%	20 Χ _。 1.2 λ _。	0.8	51	53	4	4	1	1	0	0	0	0
ATIC	30 d	0.25	~37%	18 Χ _。 1.6 λ _。	0.8	5	5	0	0	0	0	0	0	0	0
TRACER	30 d	5	-	TRD	0.8	93	96	6	7	2	2	1	1	0	0
G400	10 y	3.9	~40%	25.4 Χ ₀ 1.2 λ ₀	0.8	8830	9073	612	636	193	206	58	69	17	20

p and He count estimation

Experiment	Duration	GF (m² sr)	Calo σ(E)/ E	Calo depth	ε sel	E>0.1 PeV		E>0.5 PeV		E>1 PeV		E>2 PeV		E>4 PeV	
						р	Не	р	Не	р	Не	р	Не	р	Не
CALET	5 y	0.12	~40%	30 Χ _。 1.3 λ _。	0.8	292	276	17	19	5	6	1	2	0	0
CREAM	180 d	0.43	~45%	20 Χ ₀ 1.2 λ ₀	0.8	103	97	6	7	2	2	0	1	0	0
ATIC	30 d	0.25	~37%	18 Χ _。 1.6 λ _。	0.8	10	9	1	1	0	0	0	0	0	0
G400	10 y	3.9	~40%	25.4 Χ _。 1.2 λ _。	0.8	18951	17921	1123	1242	300	374	69	106	11	24

Flux sensitivity.

 $\sigma = \frac{N_{SOURCE}}{\sqrt{N_{SOURCE} + N_{BG}}}$

Significance to identify point source in the presence of permanent background: N_{SOURCE} - gamma from point source during time T in energy range E₁, E₂;

$$N_{BG} - \text{gamma from permanent background during time T in energy range E_1, E_2;}$$
Source spectrum $I_{SOURCE}(E) \frac{1}{cm^2 \times sec \times MeV} \sim E^{-2}$

$$N_{SOURCE} = 0.68 \times \int_{T} \int_{E_1}^{E_2} A_{eff}(E) \times C_{MIN}(E_1, E_2) \times E^{-2} dE dt$$

$$\approx 0.68 \times T \times A_{eff} \times C_{MIN}(E_1, E_2) \times \left(\frac{1}{E_1} - \frac{1}{E_2}\right) = a \times C_{MIN}$$

$$N_{BG} = \int_{T} \int_{E_1}^{E_2} J_{BG}(E) \times A_{eff}(E) \times \left(\int_{\Omega_{FSF}(E)} sin\theta cos \theta d\theta d\varphi\right) dE dt$$

$$\approx \pi T A_{eff} \times \int_{E_1}^{E_2} J_{BG}(E) \times (1 - cos^2 \theta_{PSF}(E)) dE = b$$

$$\sigma = \frac{a \times C_{MIN}(E_1, E_2)}{\sqrt{a \times C_{MIN} + b}}$$

$$T = \frac{a \times C_{MIN}(E_1, E_2)}{\sqrt{a \times C_{MIN} + b}}$$

FERMI Point Source Sensitivity: < 6 ×10⁻⁹ cm⁻² s⁻¹ http://fermi.gsfc.nasa.gov/science/instruments/table1-1.html

14th Marcel Grossmann Meeting, Rome, July 12-18, 2015

Thickness of GAMMA-400 instrument layers Standard output of the simulation code

, Material	t [t	 hicknes [q/cm2]	s [X0]	 density [q/cm3]	 Xo [cm]
psty Al CFRP T O T A L	2.000000 3.000000 0.160000 5.160000	2.120000 0.144000 0.233600 2.497600	0.048416 0.005997 0.005091 0.059504	1.060000 0.048000 1.460000	41.308608 500.232534 31.430273
C Si W Al CFRP TOTAL	0.600000 0.281060 31.240000 1.760000 33.881060	1.399800 5.410407 0.499840 2.569600 9.879647	0.064143 0.800000 0.020817 0.055997 0.940957	2.333000 19.250000 0.016000 1.460000	9.354073 0.351325 1500.697602 31.430273
S1 pSty Al CFRP TOTAL	2.000000 3.000000 0.160000 5.160000	2.120000 0.048000 0.233600 2.401600	0.048416 0.001999 0.005091 0.055506	1.060000 0.016000 1.460000	41.308608 1500.697602 31.430273
S2 pSty Al CFRP TOTAL	2.000000 3.000000 0.160000 5.160000	2.120000 0.048000 0.233600 2.401600	0.048416 0.001999 0.005091 0.055506	1.060000 0.016000 1.460000	41.308608 1500.697602 31.430273
CC1 si CFRP T O T A L	0.120000 3.744110 11.080000 1.200000 16.144110	0.279960 16.960818 0.350080 1.752000 19.342858	0.012829 2.000000 0.014580 0.038180 2.065588	2.333000 4.530000 0.016000 1.460000	9.354073 1.872055 1500.697602 31.430273
S3 pSty Al CFRP T O T A L	2.000000 2.840000 0.160000 5.000000	2.120000 0.045440 0.233600 2.399040	0.048416 0.001892 0.005091 0.055399	1.060000 0.016000 1.460000	41.308608 1500.697602 31.430273
CC2 CSI(T1) each TOTAL	43.000000 43.000000	194.790000 194.790000	22.969411 22.969411	4.530000	1.872055
T O T A L	113.505170	233.712345	26.201871		