

<u>Nikolay Topchiev</u> for the GAMMA-400 Collaboration

GAMMA-400

High-energy gamma-ray studying with

July 12-20, 2017, ICRC2017, Busan, Korea

The percentage of the different types of gamma-ray sources according to the 3FGL Fermi-LAT catalogue

Composition of discrete sources, recorded by H.E.S.S.

arXiv :1509.00012, 2015

https://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2016/01/

The percentage of the different types of gamma-ray sources according to the 3FGL Fermi-LAT catalogue

Composition of discrete sources, recorded by H.E.S.S.

arXiv :1509.00012, 2015

https://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2016/01/

One of the leading candidates for the DM particle are weakly interacting massive particles (WIMPs) producing gamma rays after annihilation or decay

Capabilities of different gamma-ray telescopes to resolve DM lines

Energy resolution for Fermi-LAT is ~10% ($E_{\gamma} > 10$ GeV) and ground-based gamma-ray telescopes is ~15% ($E_{\gamma} ~ 100$ GeV) The gamma ray flux as a function of the photon's energy for a WIMP of mass 300 GeV. Shown are three different experimental energy resolutions.

arXiv:1009.5107

Capabilities of different gamma-ray telescopes to resolve DM lines

Energy resolution for Fermi-LAT is ~10% ($E_{\gamma} > 10$ GeV) and ground-based gamma-ray telescopes is ~15% ($E_{\gamma} ~ 100$ GeV) The gamma ray flux as a function of the photon's energy for a WIMP of mass 300 GeV. Shown are three different experimental energy resolutions.

arXiv:1009.5107

Future gamma-ray telescopes should have the significantly improved angular and energy resolutions

Such a new generation telescope will be

GAMMA-400

GAMMA-400 MAIN SCIENTIFIC GOALS

The GAMMA-400 main scientific goals are: dark matter searching by means of gamma-ray astronomy; precise and detailed observations of Galactic plane, especially, Galactic Center, Fermi Bubbles, Crab, Vela, Cygnus, Geminga, Sun, and other regions, extended and point gamma-ray sources, diffuse gamma rays with unprecedented angular (~0.01° at $E_{\gamma} > 100$ GeV) and energy resolutions (~1% at E_{γ} > 100 GeV).

Comparison of the main parameters for GAMMA-400 and Fermi-LAT

	Fermi-LAT	GAMMA-400
Orbit	circular, 565 km	Highly elliptical, 500-300000 km (without the Earth's occultation)
Operation mode	Sky-survey (3 hours)	Point observation (up to 100 days)
Source exposition	1/8	1
Energy range	~100 MeV - ~300 GeV	~20 MeV - ~1000 GeV
Effective area ($E_v > 1 \text{ GeV}$)	~5000 cm ² (front)	~4000 cm ²
Coordinate detectors - readout	Si strips (pitch 0.23 mm) digital	Si strips (pitch 0.08 mm) analog
Angular resolution	$\sim 3^{\circ} (E_{\gamma} = 100 \text{ MeV})$ $\sim 0.2^{\circ} (E_{\gamma} = 10 \text{ GeV})$ $\sim 0.1^{\circ} (E_{\gamma} > 100 \text{ GeV})$	~ 2° (E _{γ} = 100 MeV) ~ 0.1° (E _{γ} = 10 GeV) ~ 0.01° (E _{γ} > 100 GeV)
Calorimeter	CsI(Tl)	CsI(Tl)+Si
- thickness	~8.5X ₀	~22X ₀
Energy resolution	~18% ($E_{\gamma} = 100 \text{ MeV}$) ~10% ($E_{\gamma} = 10 \text{ GeV}$) ~10% ($E_{\gamma} > 100 \text{ GeV}$)	~10% ($E_{\gamma} = 100 \text{ MeV}$) ~3% ($E_{\gamma} = 10 \text{ GeV}$) ~1% ($E_{\gamma} > 100 \text{ GeV}$)
Mass	2800 kg	4100 kg
Telemetry downlink volume, Gbytes/day	15 Gbytes/day	100 Gbytes/day

Comparison of main parameters of operated, current, and planned space-based and ground-based instruments

	SPACE-BASED INSTRUMENTS				GROUND-BASED GAMMA-RAY FACILITIES				
	AGILE	Fermi- LAT	DAMPE	CALET	GAMMA- 400	H.E.S.S II	MAGIC	VERITAS	СТА
Particles	γ	γ	e, nuclei, γ	e, nuclei, γ	γ	γ	γ	γ	γ
Operation period	2007-	2008-	2015	2015	~2025	2012-	2009-	2007-	~2020
Energy range, GeV	0.03-50	0.02- 300	5- 10000	10- 10000	0.02- ~1000	> 30	> 50	> 100	> 20
Angular resolution $(E_{\gamma} > 100$ GeV)	0.1° (Ε _γ ~1 GeV)	0.1°	0.1°	0.1°	~0.01	0.07°	0.07° (E _{γ} = 300 GeV)	0.1°	$\begin{array}{c} 0.1^{o} \\ (E_{\gamma} = 100 \; \text{GeV}) \\ 0.05^{o} \\ (E_{\gamma} > 1 \; \text{TeV}) \end{array}$
Energy resolution $(E_{\gamma} > 100$ GeV)	50% (E _γ ~1 GeV)	10%	1.5%	2%	~1%	15%	$\begin{array}{c} 20\% \\ (E_{\gamma} = 100 \ \text{GeV}) \\ 15\% \\ (E_{\gamma} = 1 \ \text{TeV}) \end{array}$	15%	$\begin{array}{c} 20\% \\ (E_{\gamma} = 100 \; \text{GeV}) \\ 5\% \\ (E_{\gamma} = 10 \; \text{TeV}) \end{array}$

Dependences of the GAMMA-400 angular and energy resolutions for the energy range from ~20 MeV to ~100 MeV, for the case, when gamma rays convert in the four $0.025 X_0$ layers of converter-tracker

Comparison of the energy and angular resolutions for GAMMA-400, Fermi-LAT, HAWC, and CTA

S. Funk, et. for the CTA Consortium, Astroparticle Phys., 2013, 43, 348

The GAMMA-400 orbit evolution and observation modes

The orbit of the GAMMA-400 space observatory will have the following initial parameters: -an apogee of 300 000 km: -a perigee of 500 km; -an inclination of 51.4° The main observation mode is continuous long-duration (~100 days) observations of the Galactic Center, extended gamma-ray sources, etc.

Under the action of gravitational disturbances of the Sun, Moon, and the Earth after \sim 6 months the orbit will transform to about circular with a radius of \sim 200 000 km and will be without the Earth's occultation and out of radiation belts.

Galactic Center, Fermi Bubbles, Crab, Cygnus, Vela, Geminga, and other regions will be observed with the GAMMA-400 aperture of ±45°

Estimate of the number of gammas, which will be detected by GAMMA-400 when observing the Galactic center using the fluxes from 3FGL (effective area = 4000 cm², $T_{obs} = 1$ year, aperture ±45°): 57400 gammas for $E_{\gamma} > 10$ GeV, 1280 gammas for $E_{\gamma} > 100$ GeV

Name (3FGL)	Long	Lat	Name (Tevcat)	Nph (1-100 GeV)	Nph (10-100 GeV)
3FGL J1713.5-3945e	347.3355	-0.4727	RX J1713.7-3946	572	118
3FGL J1802.6-3940	352.4447	-8.4247		1277	28
3FGL J1718.0-3726	349.7233	0.1619	SNR G349.7+00.2	550	36
3FGL J1823.6-3453	358.6796	-9.9341		220	28
3FGL J1745.6-2859c	359.9552	-0.0391	Galactic Center	2748	126
3FGL J1746.3-2851c	0.1488	-0.1029		3472	58
3FGL J1800.8-2402	5.9559	-0.4517	HESS J1800-240	1298	35
3FGL J1809.8-2332	7.3876	-2.0005		8044	76
3FGL J1801.3-2326e	6.5266	-0.251	W 28	6747	137
3FGL J1805.6-2136e	8.6038	-0.2105	HESS J1804-216	3051	142
3FGL J1833.6-2103	12.1671	-5.7051		2585	38
			Sum	30563	822

Comparison of the capabilities to study Galactic Center by Fermi-LAT with the angular resolution of ~0.1° for $E_{\gamma} = 100 \text{ GeV}$ (yellow circle) and GAMMA-400 with the angular resolution of ~0,01° for $E_{\gamma} = 100 \text{ GeV}$ (red circle), using Chandra X-ray observation. The Sgr A* position is marked by cross.

Comparison of the Fermi-LAT and GAMMA-400 capabilities to resolve gamma-ray lines from dark matter particles

FIG. 3. The γ -ray differential energy results (multiplied by E^2) for a 135 GeV right-handed neutrino dark matter candidate are shown, with the present Fermi-LAT energy resolution $\Delta E/E =$ 10% FWHM (solid line)

and with a future γ -ray instrument, such as GAMMA-400 [38] (dash-dotted line) with resolution at the one percent level. The extrapolated power-law $\sim E^{-2.6}$ of the presently measured continuous γ -ray background is also shown.

PHYSICAL REVIEW D 86, 103514 (2012) 130 GeV fingerprint of right-handed neutrino dark matter

Lars Bergström*

GAMMA-400 and X-ray telescope on the GAMMA-400 space observatory

At the space observatory, together with the GAMMA-400 gamma-ray telescope, an X-ray telescope will be installed. Simultaneous observations in the X-ray and gamma-ray ranges of the Galactic plane, especially, Galactic center, Fermi bubbles, Crab, etc. will greatly improve our understanding of the processes taking place in the astrophysical objects.

Conclusions

- After Fermi-LAT the GAMMA-400 mission represents a unique opportunity to significantly improve the data of LE+HE gamma rays and X-rays with unprecedented angular and energy accuracy.
- According the new approved Russian Federal Space Program 2016-2025 the GAMMA-400 space observatory is scheduled to launch in 2025-2026.

GAMMA-400 site - http://gamma400.lebedev.ru/