

Косвенный метод поиска частиц тёмной материи (методика и результаты)

<u>А.М. Гальпер</u> (НИЯУ МИФИ, ФИАН)

Проявление темной материи в различных астрофизических объектах

- измерение орбитальных скоростей периферийных объектов: галактик и галактических кластеров;
- гравитационное линзирование;
- рентгеновское свечение галактик, скоплений галактик;
- формирование крупномасштабной структуры метагалактики;
- пространственная анизотропия температуры реликтового радиоизлучения.

Энергетический баланс во Вселенной

WMAP

(Wilkinson Microwave Anisotropy Probe) 2001 - 2009 гг.

Planck

space observatory 2009 г. - Н.В.

Космологические параметры

ACDM (Lambda-Cold Dark Matter) - космологическая модель, в которой пространственно-плоская Вселенная заполнена барионной материей, тёмной энергией (описываемой космологической постоянной Λ в уравнениях Эйнштейна) и холодной тёмной материей (англ. Cold Dark Matter)

Ω_{tot}	$=$ Ω_{Λ} +	$\Omega_{_M}$ =	$\Omega_{\!arLambda}$	+	Ω_{CDM}	+	Ω_B	
	~68.3%	~31.7%			~26.8%		~4.9%	
	вакуум?	$\boldsymbol{\mathcal{Y}}_{0}$		астицы?	звёз	звёзды и галактики,		
						свободн	ные водоро	д и гелий

Постоянная Хаббла, Н 67.4±1.4 км/(Мпк·с) Возраст Вселенной, t_U (13.813±0.058)·10⁹ лет

Уравнение Больцмана для изменения плотности n_x ВИМПов во времени в Галактике

$$\frac{dn_x}{dt} = -3Hn_x - (n_x^2 - n_x^{eq,2}) < \sigma_{ann}v >$$

$$n_{eq} \propto (mT)^{\frac{3}{2}} e^{\frac{-m_x c^2}{kT}}$$

$$n_x(t_0)m_x = 3x10^{-27} \text{cm}^3 \text{sec}^{-1}$$

$$\Omega_x = \frac{h_x(t_0)h_x}{\rho_c(t_0)} = \frac{\sigma_{x10} - c_{11} - b_{22}}{<\sigma_{ann}v > h^2}$$

Текущее состояние поиска частиц тёмной материи

Ограничения, полученные в прямых и косвенных экспериментах.

Возможность обнаружения аннигиляции тёмной материи по разным признакам, если на ранних стадиях эволюции Вселенной имела место взаимная аннигиляция частиц.

M.S. Madhavacheril, N. Sehgal, T. R. Slatyer, 1310.3815

5 ноября 2013 года, Сессия ОЯФ РАН

Кандидаты на роль частиц темной материи

Alexander Kusenko, Leslie J. Rosenberg, 1310.8642

Кандидаты на роль частиц темной материи

Суперсимметричные частицы

Наилегчайшая из суперсимметричных частиц имеет массу 50÷1000 ГэВ Пример: нейтралино.

При сохранении R-четности

не распадается на обычные частицы

Многомерное пространство

Легчайшая частица Калуцы-Кляйна(LKP): В⁽¹⁾

Бозонная темная материя В конечном состоянии образуется два лептона

Как и в случае нетралино, существует однопетлевая диаграмма, образующая моноэнергичную пару үү в конечном состоянии

5 ноября 2013 года, Сессия ОЯФ РАН

Стандартная модель

Семейства

Методы регистрации частиц темной материи

Рождение частиц тёмной материи на адронных ускорителях

Рождение сопровождает:

«струя»

образование фотона, W или Z - бозона

Принцип регистрации частиц темной материи при упругих столкновениях с веществом детекторов в подземных установках

Текущее состояние экспериментальных исследований

по поиску частиц тёмной материи

(в модели спин-независимых упругих взаимодействий ВИМПов с ядрами)

F. Arneodo, arxiv: 1301.0441

⁵ ноября 2013 года, Сессия ОЯФ РАН

Текущее состояние экспериментальных исследований

по поиску частиц тёмной материи

(в модели спин-зависимых упругих взаимодействий ВИМПов с ядрами)

⁵ ноября 2013 года, Сессия ОЯФ РАН

Схема нейтринного эксперимента IceCube

Регистрация нейтрино в эксперименте IceCube

Гало горячего газа в окрестности Галактики по данным обсерватории Chandra

J.Va'vra, arXiv:1304.0833v3

Модели распределения темной материи в Галактике

DM halo	α	$r_s \; [{ m kpc}]$	$\rho_s [{\rm GeV/cm^3}]$		
NFW	_	24.42	0.184		
Einasto	0.17	28.44	0.033		
EinastoB	0.11	35.24	0.021		
Isothermal	_	4.38	1.387		
Burkert	_	12.67	0.712		
Moore		30.28	0.105		

Косвенные методы регистрации частиц тёмной материи

Общий вид спектрометра «ПАМЕЛА»

Диапазон энергий:

протоны	0.08-1000 ГэВ
антипротоны	0.06-350 ГэВ
электроны	0.05-650 ГэВ
позитроны	0.05-250 ГэВ
антиядра	0.1-45 ГэВ/нук.

Macca 450 кг Габаритные размеры Индукция магнитного поля

Электрическая мощность

 $1 \text{ M} \times 1 \text{ M} \times 1.25 \text{ M}$

0.48 Тл

350 Вт

Основные результаты эксперимента «ПАМЕЛА»

5 ноября 2013 года, Сессия ОЯФ РАН

Аннигиляция нейтралино с различными массами, boost-фактор 3·10⁴

Аннигиляция бозона КК с различными массами, boost-факторы 700 и 1800

Отношение потока позитронов к суммарному потоку электронов и позитронов (PAMELA, Fermi/LAT)

Суммарный поток электронов и позитронов (**Fermi/LAT, H.E.S.S.**)

<u>Теоретическая модель</u>: рождение позитронов при аннигиляции частиц тёмной материи с массой 3 ТэВа на пару тау-лептонов $\tau^+ \tau^-$ с сечением 2·10⁻²² см³/с.

Спектры электронов и позитронов галактических космических лучей

⁵ ноября 2013 года, Сессия ОЯФ РАН

Суммарный поток электронов и позитронов в галактическом космическом излучении

Отношение потока позитронов к суммарному потоку электронов и позитронов

<u>Теоретическая модель</u>: рождение позитронов при распаде частиц тёмной материи с массой 1.2 ТэВ на электрон-позитронную пару е⁺ е⁻ в разных моделях.

Отношение потока антипротонов к потоку протонов в

галактическом космическом излучении

А.Г. Майоров и др., Известия РАН. Серия физическая. - 2013.Т. 77, № 5. С. 670-673.

<u>Теоретическая модель</u>: рождение пары протона и антипротона при распаде частиц тёмной материи с массой 7 ТэВ, сечение аннигиляции ~ 7 · 10⁻²⁸ см³/с.

Отношение потока позитронов к суммарному потоку электронов и позитронов (**PAMELA, Fermi/LAT, AMS-02**)

5 ноября 2013 года, Сессия ОЯФ РАН

Отношение потока позитронов к суммарному потоку электронов и позитронов

Суммарный поток электронов и позитронов (**Fermi/LAT**)

(PAMELA, AMS-02)

I. Cholis, D. Hooper, arXiv:1304.1840

<u>Теоретическая модель</u>: рождение позитронов при аннигиляции нейтралино с массами 350 ГэВ и 900 ГэВ на $e^+ e^-$ (сверху) и на $\mu^+ \mu^-$ (снизу). Область диффузии L = 8 Кпк.

Отношение потока позитронов к суммарному потоку электронов и позитронов

S. Li, Y. Luo, arxiv: 1310.3466

<u>Теоретическая модель</u>: рождение позитронов при аннигиляции частиц тёмной материи с массой 135 ГэВ на 2 электрон-позитронных пары 2e⁺ 2e⁻ с сечением 3.5 · 10⁻²⁵ см³/с. Распределение тёмной материи в Галактике: комбинированное.

Отношение потока позитронов к суммарному потоку электронов и позитронов (**PAMELA, AMS-02**)

Суммарный поток электронов и позитронов (Fermi/LAT)

I. Cholis, D. Hooper, arXiv:1304.1840

<u>Теоретическая модель</u>: рождение позитронов при аннигиляции нейтралино с массами 2.5, 3 и 1.6 ТэВ через скалярные мезоны ф. Область диффузии L = 8 Кпк.

Отношение потока позитронов к суммарному потоку электронов и позитронов (PAMELA, AMS-02, Fermi/LAT)

Суммарный поток электронов и позитронов (Fermi/LAT и др.)

<u>Теоретическая модель</u>: рождение позитронов при распаде частиц тёмной материи с массой 3 ТэВ на $\tau^+ \tau^- \upsilon$ со временами жизни $4 \cdot 10^{25}$ с и $5 \cdot 10^{25}$ с.

Пульсары как источник позитронов в Галактике

Отношение потока позитронов к суммарному потоку электронов и позитронов (**PAMELA, AMS-02**)

Суммарный поток электронов и позитронов (Fermi/LAT)

I. Cholis, D. Hooper, arXiv:1304.1840

<u>Теоретическая модель</u>: рождение позитронов в пульсарах, спектр инжекции в межпланетное пространство $\mathcal{A}_{\mathcal{A}} = \mathcal{A}_{\mathcal{A}} = \mathcal{A}_{\mathcal{A}} = \mathcal{A}_{\mathcal{A}}$

Область диффузии L = 8 Кпк.

Пульсары как источник позитронов в Галактике

Schumann M., arXiv:1310.5217

⁵ ноября 2013 года, Сессия ОЯФ РАН

Верхний предел на угловую анизотропию потока позитронов в Галактике по данным AMS-02

Расчёт потоков частиц аннигиляции и распада

Расчёт потоков γ-квантов от аннигиляции

Классическое уравнение переноса космических лучей и у-квантов в Галактике

Сравнение диффузного излучения в экспериментах EGRET и Fermi-LAT

Поиск частиц тёмной материи по регистрации гаммаквантов высокой энергии

ANGH

После 4.5 лет работы в эксперименте Fermi на уровне 2.9 стандартных отклонений обнаружено превышение потока гама-квантов с энергией ~ 133 ГэВ над фоном

Michael Gustafsson for the Fermi-LAT collaboration, arXiv:1310.2953

5 ноября 2013 года, Сессия ОЯФ РАН

Регистрация гамма-излучения в районе центральной области Галактики (Fermi/LAT)

В работе W.-C. Huang,; A. Urbanoa, W. Xueb; arXiv:1310.7609v1 показано, что сигнал может быть связан с аннигиляцией частиц тёмной материи с рождением 2-х фермионов стандартной модели. $M_{DM} = 10 \Gamma_{9}B, \langle \sigma_{ahh}v \rangle = 6 \cdot 10^{-27} \text{ см}^3 \text{c}^{-1}$ (аннигиляция по каналу $\tau^+\tau^-$) $M_{DM} = 60 \Gamma_{9}B, \langle \sigma_{ahh}v \rangle = 2 \cdot 10^{-26} \text{ см}^3 \text{c}^{-1}$ (аннигиляция по каналу b-анти-b).

Эксперименты, получившие указания на существование частиц «тёмной» материи

Эксперимент	Комментарий	
DAMA/LIBRA годовая модуляция	Нет объяснения; нет подтверждения другими экспериментами	
CoGeNT избыток событий и годовая модуляция	Противоречит другим данным	
EGRET избыток гамма-квантов с энергией ~ГэВ	Не подтверждено FERMI	
INTEGRAL линия 511 кэВ от области центра Галактики	Не обладает сферической симметрией — асимметрия, характерная для диска (?)	
PAMELA: отношение потоков антипротонов и протонов	Эффект может быть связан с аннигиляцией тёмной материи или взаимодействием космических лучей	
PAMELA: аномальное отношение космических позитронов/электронов	Эффект может быть вызван темной материей и пульсарами – не указывает однозначно на темн	
FERMI позитроны+электроны	материю	
FERMI избыток гамма-излучения в направлении центра Галактики	Нет объяснения; возможно это астрофизический эффект. Нет комментария от коллаборации FERMI	
WMAP радио "haze" 5 ноября 2013 года	Соответствует "FERMI bubbles" – возможно вызван потоками, исходящими из центра , Салакя ижи Ф РАН	

Физическая схема ГАММА-400

Сравнение основных характеристик работавших, работающих и планируемых экспериментов

	КОСМИЧЕСКИЕ ИНСТРУМЕНТЫ				НАЗЕМНЫЕ УСТАНОВКИ			
	EGRET	AGILE	Fermi- LAT	FAMMA-400	H.E.S.SII	MAGIC	VERITAS	СТА
Период работы	1991-2000	2007-	2008-	2019	2012-	2009-	2007-	2018
Энерг. диапазон, ГэВ	0.03-30	0.03-50	0.02- 300	0.1- 10000	> 30	> 50	> 100	> 20
Угловое разреше- ние (Е _γ > 100 ГэВ)	0.2° (Е _ү ~0.5 ГэВ)	0.1° (Е _ү ~1 ГэВ)	0.1°	~ 0.01 °	0.07°	0.07° (Ε _γ = 300 ΓэΒ)	0.1°	0.1° ($E_{\gamma} = 100 \ \Gamma 3B$) 0.03° ($E_{\gamma} = 10 \ T 3B$)
Энерг. разреше- ние (Е _γ > 100 ГэВ)	15% (Е _ү ~0.5 ГэВ)	50% (Е _γ ~1 ГэВ)	10%	~1%	15%	$\begin{array}{c} 20\% \\ ({\rm E}_{\gamma}=100\ {\rm \Gamma} {\rm 3B}) \\ 15\% \\ ({\rm E}_{\gamma}=1\ {\rm T} {\rm 3B}) \end{array}$	15%	$\begin{array}{c} 20\% \\ (E_{\gamma} = 100 \ \Gamma \Im B) \\ 5\% \\ (E_{\gamma} = 10 \ T \Im B) \end{array}$

Улучшение энергетического разрешения

Bergström L., arXiv:1208.6082 (2012)

5 ноября 2013 года, Сессия ОЯФ РАН

Улучшение энергетического разрешение

Gamma-400, 10X better dE/E, 10X better PSF (100X less background), same # of events

A. Moiseev, Aspen 2013

Комплекс научной аппаратуры «ГАММА-400» на служебном модуле «Навигатор»

КА и «Навигатор» разрабатывается в НПО им. С.А. Лавочкина

Режимы наблюдений и эволюция орбиты космического аппарата «ГАММА-400»

Карта неба в гамма-диапазоне по данным Fermi/LAT и программа наблюдений в эксперименте ГАММА-400 на первый год

Сканирование Галактики

Карта неба в гамма-диапазоне по данным Fermi/LAT и программа наблюдения карликовых сферических галактик в эксперименте ГАММА-400

Возможности поиска частиц темной материи

Минимальная суперсимметричная стандартная модель (нейтралино).

Зеленый цвет - прямые измерения;

Голубой цвет – косвенные измерения;

Красный цвет – прямые и косвенные измерения;

Серый – измерения на модернизированном LHC.

D. Bauer, J. Buckley, M. Cahill-Rowley, 1305.1605 5 ноября 2013 года, Сессия ОЯФ РАН 51

литература

Snowmass CF1 Summary: WIMP Dark Matter Direct Detection. Convenors: P. Cushman, C. Galbiati, D.N. McKinsey, H. Robertson, and T.M.P. Tate1310.8327

Inderect Dark Matter Detection CF2 Working Group Summary. Conveners: L. Buckley, D.F. Cowen, S. Profumo. 1310.7040

Snowmass-2013 Cosmic Frontier 3 (CG3) Working Group Summary: Non-WIMP dark matter.

Conveners: Alecander Kusenko, Leslie J. Rosenberg. 1310.8642

Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond.

Conveners: Dan Hooper, Manoj Kaplinghat, Konstantin Matchev. 1310.8621

Благодарю за внимание!