

TRD

S2 (TOF)

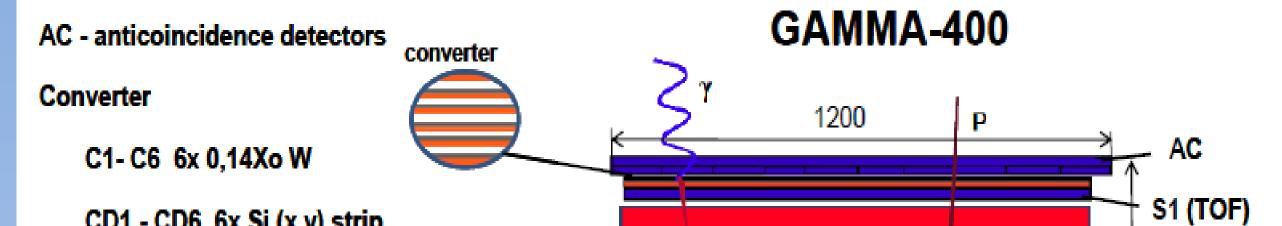
S3

S4

2010: STATUS OF THE **GAMMA-400 PROJECT**

A.M. Galper^{1, 2}, N.P. Topchiev^{1*}, M.I. Fradkin¹, S.I. Suchkov¹, Yu.T. Yurkin², I.V. Arkhangelskaya², B.A. Dolgoshein², W.G. Zverev², V.G. Zverev², V.Ya. Gecha³, A.L. Men'shenin³, V.A. Kachanov⁴, O.F. Prilutskii⁵, V.G. Rodin⁵,

¹Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia; ²Moscow Engineering Physics Institute, Moscow, Russia; ³All-Russia Research Institute of Electromechanics and Iosifyan Plant, Moscow, Russia; * tnp51@rambler.ru

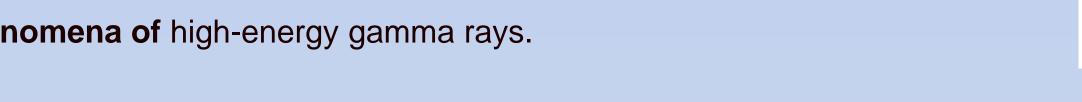

R.L. Aptekar⁶, E.P. Mazets⁶, V. Bonvicini⁷, M. Boezio⁷, A. Vacchi⁷, N. Zampa⁷, P. Picozza⁸, P. Spillantini⁹, G. Castellini¹⁰

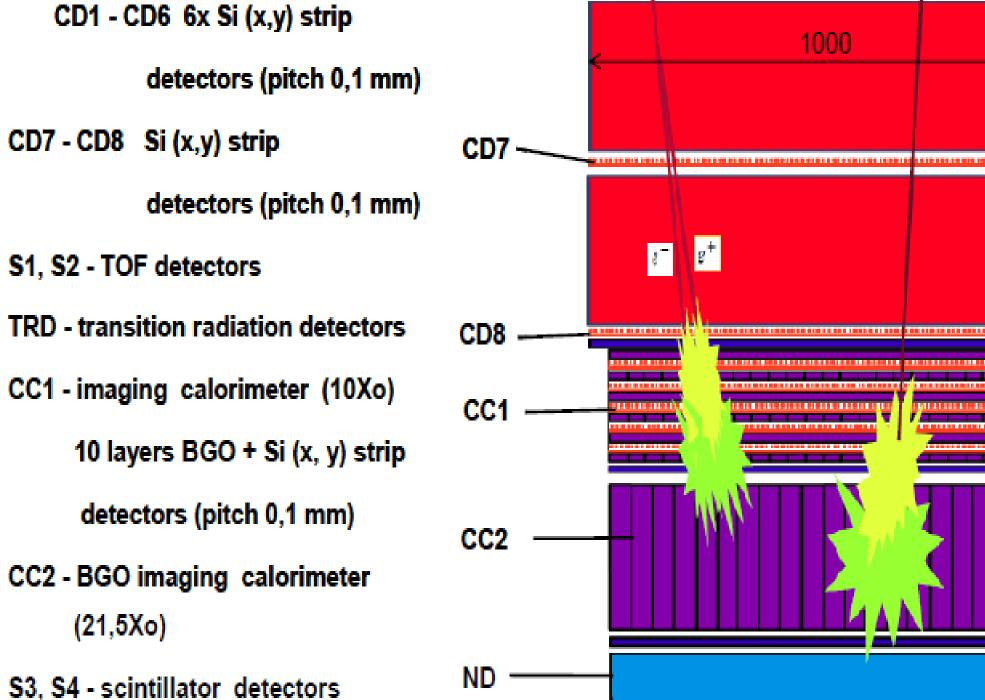
⁴Institute for High Energy Physics, Protvino, Russia; ⁵Space Research Institute, Russian Academy of Sciences, Moscow, Russia; ⁶loffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia;

⁷Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy; ⁸Istituto Nazionale di Fisica Nucleare, Sezione di Roma 2 and Physics Department of University of Rome "Tor Vergata", Rome, Italy; ⁹Istituto Nazionale di Fisica Nucleare, Sezione di Firenze and Physics Department of University of Florence, Florence, Italy; ¹⁰Istituto di Fisica Applicata "Nello Carrara", Florence, Italy.

Abstract

The GAMMA-400 telescope for detecting gamma rays and electrons (positrons) in the energy range 0.1-3000 GeV is presented. Its performance (angular resolution ~0.02°, energy resolution ~1%, e/p rejection factor ~10⁶) enables to detect high-energy gamma rays from galactic and extragalactic


astrophysical objects, to measure energy spectra of galactic and extragalactic diffuse gamma-ray emission, to search for gamma rays and electrons (positrons) from annihilation or decay of dark matter components, to search for and investigate transient phenomena of high-energy (more than 1 GeV) gamma-ray bursts, as well as galactic electron (positron) fluxes.


MAIN PROBLEMS OF THE HIGH-ENERGY GAMMA-RAY ASTRONOMY (Ey > 100 MeV)

- Generation of cosmic rays in discrete extragalactic and galactic sources, including the Sun, connected with the appearance of high-energy gamma-ray fluxes.
- Measurement of energy spectra of galactic and extragalactic diffuse gamma-radiation. Search for spectral anomalies.
- Study of the nature of **dark matter** particles by their annihilation and decay, which are accompanied by the appearance of high-energy gamma-ray, electron, and positron fluxes.
- Investigation of transient phenomena of high-energy gamma rays.

HIGH-ENERGY SPACE-BASED GAMMA-RAY TELESCOPES

ND - neutron detectors

Main results (2010)

800

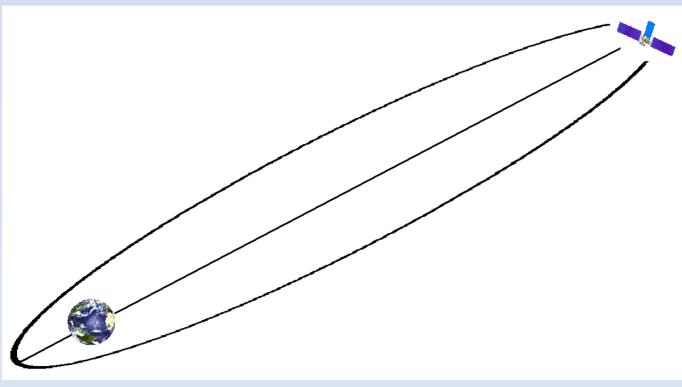
GAMMA-1 – High-energy gamma rays (> 1 GeV) from solar flares **EGRET**-Third EGRET Catalog: 271 discrete sources, 170 unidentified sources **AGILE** - First AGILE Catalog: 47 discrete sources, 8 unidentified sources. **FERMI-LAT** – First Fermi Source Catalog:

range to

REQUIREMENTS TO NEW GAMMA-RAY TELESCOPE PROJECT

To explain many new problems occurred after the EGRET, AGILE, FERMI observation data and to improve their performances it is necessary for future gamma-ray telescopes to:

1. Extend the energy range up to 3000 GeV (to explain space-based and groundbased observation data).


2. Improve energy resolution up to ~1% (to reveal features in the energy spectra of gamma rays, electrons, and positrons, which are found to be connected with the dark matter).

3. Improve angular resolution up to $\sim 0.02^{\circ}$ (to identify discrete sources).

4. Increase sensitivity.

5. Increase the efficiency of gamma-ray selection.

ngular resolution

GAMMA-400 ORBIT

The GAMMA-400 space observatory with the Navigator service module will be launched by the Zenit-2SB launch vehicle into a high-apogee orbit (apogee 300000 km, perigee 500 km, inclination 51.8).

THE GAMMA-400 INSTRUMENT PARAMETERS AND ESTIMATED PERFORMANCE.

Parameters	Value of range
Energy range	0.1-3000 GeV
Converter area	100 x 100 cm ²
Converter thickness	0.84 radiation lengths
Coordinate detectors	Si strips with 0.1-mm pitch
Angular resolution ($E\gamma > 100 \text{ GeV}$)	~0.02°
Calorimeter thickness	~30 radiation lengths
Calorimeter area	800 x 800 mm ²
Field of view	± 55°
Geometrical factor	1.8 m ² sr
Energy resolution (E γ > 10 GeV)	~1%
Weight	~ 2500 kg
Proton rejection	10 ⁶
Point source sensitivity, ph/cm ² s ($E\gamma > 100$ MeV)	~5x10 ⁻⁹
Telemetry downlink	100 GB/day
Dimensions	2×2×2.5 м ³
Power consumption	2000 W

GAMMA-400 is developed within the framework of the Russian Federal Space Program.

