30-я Всероссийская конференция по космическим лучам Санкт-Петербург, 2-7 июля 2008 г.

ΠΡΟΕΚΤ ΓΑΜΜΑ-400

Модернизированный гамма-телескоп ГАММА-400 для регистрации космического гамма-излучения с энергиями до 3 ТэВ

В. Гинзбург¹, В. Каплин², М. Рунцо², Н. Топчиев¹, М. Фрадкин¹

¹Физический институт им. П.Н. Лебедева Российской Академии наук, Москва ²Московский инженерно-физический институт, Москва

Исследование космического гамма-излучения

Регистрация космического гамма-излучения осуществляется двумя методами.

- 1.Прямые измерения гамма-телескопами, размещаемыми на космических аппаратах, первичных гамма-квантов с определением типа частицы, измерения ее энергии и направления прихода.
- 2.Получение сведений о гамма-излучении на основе регистрации наземными установками продуктов взаимодействия первичных частиц с веществом атмосферы (частиц ШАЛ).
- При проведении измерений вторым методом имеется трудность, связанная с тем, что отсутствует достоверная информация о том, какая частица (заряженная или незаряженная) инициировала конкретный ШАЛ.
- В связи с этим результаты измерений вторым методом диффузной составляющей нельзя считать достаточно достоверными.

Космические аппараты для исследования гамма-излучения							
	OSO-3	SAS-2	COS-B	ГАММА-1	EGRET	GLAST	ГАММА-400
Год	1967	1972	1975	1990	1991	2008	2013*
запуска							
Интервал							
между		5 3	3 1	15	1 1	7	5^*
запусками							
(в среднем							
7,5 лет)							
Длитель-							
ность	1,5	1	7,5	1,5	9	5*	5*
функцио-							
нирования,							
лет							
Максим.	50 МэВ	1 ГэВ	10 ГэВ	5 ГэВ	30 ГэВ	300 Гэ <mark>В</mark> *	<u>3000 ГэВ[*]</u>
энергия							

* Планируемые значения соответствующих параметров

THIRD EGRET CATALOG

Третий каталог дискретных источников по данным EGRET Зарегистрирован 271 гамма-источник (Еγ>100 МэВ), из которых 170 не идентифицированы. Среди идентифицированных - 93 ядра активных галактик, 5 пульсаров. 5

Спектр диффузного гамма-излучения в Галактической плоскости.

Некоторые проблемные вопросы гамма-астрономии, которые планируется исследовать в рамках проекта ГАММА-400

- 1.Энергетический спектр гамма-квантов (диффузная компонента) с Е_v>30 ГэВ.
- 1.1.Возможность изменения наклона гамма-спектра, связанного с нерегулярностью спектра первичных протонов («колено») при E_p≥10¹² эВ и при больших E_p.
- 1.2.Поиск «избыточного» излучения (континуум и моноэнергетические линии), обусловленного аннигиляцией частиц, формирующих темную материю.
- 2.Измерение энергетического спектра гамма-квантов дискретных источников в интервале энергий 30-3000 ГэВ.

Galactic Plane, 40° < l <100°, |b|< 5°

Спектр диффузного гамма-излучения в Галактической плоскости.

Поиск «темной материи»

Два возможных канала испускания гамма-квантов при аннигиляции пары нейтралино.

- 1.Аннигиляция «быстрых» нейтралино с испусканием большого числа разнообразных частиц (антипротоны, позитроны, гамма-кванты).
- 2.Аннигиляция «медленных» нейтралино (E_{кин}/m_χ≈10⁻³) с испусканием двух фотонов, энергии которых близки к массе нейтралино m_χ (аналогично аннигиляции покоящихся электрона и позитрона с испусканием двух фотонов с энергией 0,511 МэВ).

Возможность регистрации гамма-линии определяется соотношением между числом гамма-квантов с энергией Е, регистрируемых в интервале ΔЕ, и числом сигналов флуктуационного характера от гамма-квантов диффузной компоненты, попадающих в тот же энергетический интервал. • В случае поиска гамма-линий это соотношение с ростом энергии меняется в пользу регистрации моноэнергетических фотонов. Поток аннигиляционных гамма-квантов пропорционален квадрату концентрации нейтралино n_{χ}^2 , сечению аннигиляции $\langle \sigma v \rangle$ и расстоянию l (от детектора до границы Галактики), с которого собираются аннигиляционные гамма-кванты

$$F_{\tilde{f}\tilde{f}\to\gamma\gamma} = An_{\chi}^2 < \sigma v > l$$

Поскольку $n_{\chi} = \frac{\rho_{\partial \hat{l}}}{m_{\chi}}$, a $<\sigma v >= km_{\chi}^2$

поток таких гамма-квантов не зависит от массы нейтралино:

$$F_{\tilde{f}\tilde{f}\to\gamma\gamma}=A\rho_{\partial l}^2 l$$

Так как поток гамма-квантов диффузного излучения падает с ростом энергии, обнаружение аннигиляционной гамма-линии на этом фоне становится тем более вероятным, чем больше масса нейтралино.

Дискретные гамма-источники

- Наблюдение дискретных гамма-источников и исследование их характеристик (спектральный состав, стабильность излучения во времени, идентификация с определенными астрономическими объектами) проводятся как гамма-телескопами на космических аппаратах (в интервале энергий до 30 ГэВ), так и наземными установками (при энергиях выше 100 ГэВ). Сопоставление энергетических спектров, полученных двумя методами, показывает, что в некоторых случаях наблюдается несовпадение наклонов спектра.
- В качестве примера приведены результаты измерений для одного из наиболее интенсивных объектов Крабовидной туманности.
- Прямые измерения спектра до 3 ТэВ помогут решить вопрос о природе наблюдаемого несовпадения.

• Энергетический спектр гамма-излучения от Крабовидной туманности.

Эксперимент ГАММА-400

Для выполнения указанной программы исследований надо создать гамма-телескоп, который адекватен поставленным задачам и в то же время может быть реализован в условиях нашей действительности.

Работы над проектом ГАММА-400 начались в конце 80-х – начале 90-х годов по инициативе группы сотрудников ФИАН В.Л. Гинзбург, Л.В. Курносовой, Л.А. Разоренова и др. Основным лидером в деле реализации проекта ГАММА-400 была Л.В. Курносова, благодаря активности и настойчивости которой проект ГАММА-400 был включен в Федеральную космическую программу РФ (ФКП РФ). К сожалению два года назад Л.В. Курносова скончалась, не дожив до того дня, когда эксперимент ГАММА-400 будет осуществлен.

ФКП РФ предусматривает создание космической обсерватории ГАММА-400 для исследований в интервале энергий 30-1000 ГэВ в период 2009-2015 гг. Предполагается, что космический аппарат для обсерватории ГАММА-400 будет создаваться в НПО им. С.А. Лавочкина, где разработан базовый модуль «Навигатор», дающий возможность выводить научную аппаратуру большой массы на высокоапогейную орбиту.

Базовый модуль "Навигатор" – унифицированная космическая платформа для служебных систем космических аппаратов научного назначения, создаваемых в НПО им. С.А.Лавочкина.

Некоторые характеристики модуля «Навигатор»

1.Высокоэллиптическая орбита, начальные параметры: высота апогея - 300000 км, высота перигея - 500 км, период обращения - 7 суток, угол наклонения орбиты- 51,8°.

2.Ракета-носитель «Зенит» или «Союз».

3.Допустимая масса научной аппаратуры – 1700 кг.

4. Время активного существования – не менее 5 лет.

5.Время баллистического существования на рабочей орбите ИСЗ – не менее 10 лет.

6. Точность ориентации осей научной аппаратуры - (5-10) угловых минут.

7.Возможность переориентации научной аппаратуры в полете по бортовой программе и по командам с Земли.

8.Объем научной информации, подлежащей передаче на приемные пункты – 500 Мбайт/сутки.

9. Максимальная скорость передачи телеметрической информации научной аппаратуры – 1 Мбит/с.

10.Энергопотребление научной аппаратуры – 500-800 Вт.

Гамма-телескоп ГАММА-400

При разработке гамма-телескопа мы исходили из того, что при прочих равных условиях прибор должен быть надежным, а его стоимость, по возможности минимальной.

В связи с этим гамма-телескоп ГАММА-400 обладает некоторыми отличительными чертами:

1.Все используемые детекторы созданы на основе пластических сцинтилляторов, что обеспечивает высокую надежность и низкую стоимость.

2.Имеется специальная система исключения влияния частиц «обратного тока», возникших в результате рассеяния в калориметре и движущихся к антисовпадательному детектору, что дает возможность измерять энергию вплоть до нескольких ТэВ.

3. Детекторы координатной системы представляют собой узкие сцинтилляционные полосы, в которых для собирания света используется спектросмещающее оптическое волокно, а в качестве светоприемников применяются низковольтные кремниевые фотоумножители (Si-ФЭУ). По сравнению с применением вакуумных ФЭУ существенно уменьшается энергопотребление и стоимость.

4.Используются два комплекта системы отбора гамма-квантов, расположенных над и под калориметром. При этом геометрический фактор удваивается при небольшом увеличении веса телескопа.

ГАММА-400 Гамма-телескоп состоит из следующих систем: 1. Система первичного отбора гамма-квантов: антисовпадательный детектор (АС), свинцовый конвертор (К), сцинтилляционная времяпролетная система (ВПС, СВ и СН) для регистрации продуктов конверсии. 2. Координатная система (КД), определяющая направление заряженных частиц. 3. Система измерения энергии (семплинговый калориметр СКМ).

Калориметр

Одна из основных частей гамма-телескопа – семплинговый гетерогенный калориметр, разработанный в ИВФЭ (Протвино) и предназначавшийся для измерения энергии электронов (позитронов) и гамма-квантов в исследованиях по физике высоких энергий на ускорителе RHIC (эксперимент PHENIX).

Калориметр собирается из модулей, которых в основном варианте ГАММА-400 25. Отдельный модуль собран из большого числа стандартных элементов, каждый из которых состоит из тонкого слоя свинца (0,55 мм), слоя сцинтиллятора (1,5 мм) и слоя светоотражающей бумаги. В основном варианте модуль содержит 180 элементов, что соответствует 18 рад. ед. длины. Сцинтилляционный свет собирается с помощью 144 спектросмещающих волокон, пронизывающих все элементы в модуле, и направляется на вакуумный ФЭУ-115М.

Чертеж собранного модуля калориметра.

Часть сборки отдельных элементов внутри модуля.

Внешний вид собранного модуля.

Лабораторный макет калориметра из 9 модулей.

Энергетическое разрешение калориметра по расчетам ИФВЭ и по результатам калибровки на ускорителе – 2,5% (E_γ=2 ГэВ)

Энергетическое разрешение калориметра по нашим модельным расчетам - 2 0,5% (E_v=100-1000 ГэВ). ²³

Эффект частиц «обратного тока»

Важным элементом ГАММА-400 является система устранения эффекта «обратного тока» (эффекта альбедо). При взаимодействии с веществом калориметра продуктов конверсии первичного гаммакванта появляется большое число частиц умеренной энергии (до нескольких МэВ), которые в результате рассеяния вылетают из калориметра в направлении детектора АС («обратный ток»). Фотоны «обратного тока» в детекторе АС могут создавать заряженные частицы, в результате чего детектор АС выдаст сигнал, имитирующий первичную заряженную частицу и гамма-событие будет переведено в разряд заряженных.

С ростом энергии гамма-кванта растет доля случаев перевода гаммасобытия в разряд заряженных, а это может приводить к завалу энергетического спектра, что видно на графике.

Зависимость от энергии эффективности регистрации телескопом ГАММА-400 первичных гамма-квантов космического излучения.

Использованный способ нами устранения эффекта альбедо (использование времяпролетной системы) основан на сопоставлении моментов появления сигналов детекторе АС и в нижнем детекторе времяпролетной (CH), системы 50 см. В разнесенных на случае прохождения через АС первичной заряженной частицы сигнал в АС опережает сигнал в СН примерно на 1,5 нс, а в случае регистрации в АС фотона альбедо сигнал в AC запаздывает по сравнению с сигналом в СН на 1,5 нс, позволяет ЧТО надежно дискриминировать события «обратного тока».

Координатная система

Координатная система (КД) собрана из трех блоков, каждый из которых состоит из двух слоев набора сцинтилляционных полос шириной по 1 или 2 см; длинные оси полос в двух слоях ориентированы взаимно перпендикулярно, что позволяет определить Х- и Ү-координаты точки прохождения частицы.

При расстоянии между верхним и нижним блоками 50 см угловое разрешение системы КД составляет 1-2 градуса.

Внешний вид сцинтилляционных полос (600х20х10 мм³) со спектросмещающим волокном (ССВ) и Si-ФЭУ для

координатной системы.

Модернизация ГАММА-400

В процессе проработки проектируемой обсерватории ГАММА-400 выяснилось, что ее потенциальные возможности допускают внесение в конструкцию телескопа ГАММА-400 изменений, улучшающих его метрологические характеристик. В связи с этим были изменены некоторые конструктивные параметры, что позволит увеличить светосилу прибора и улучшить энергетическое разрешение.

1.Увеличено число модулей в калориметре с 25 до 36 и, соответственно, поперечное сечение калориметра и детекторов системы отбора, что позволит **удвоить светосилу** и получить статистически обеспеченные измерения потока до энергий нескольких ТэВ.

2.Той же цели служит размещение второй системы отбора событий с противоположной стороны калориметра (возможность, связанная с независимостью калориметрического сигнала от направления входа в него регистрируемых частиц).

3.Улучшена «семплинговость» калориметра: толщина свинцового слоя уменьшена вдвое (до 0,275 мм), число слоев увеличено до 400, что по данным разработчиков из ИФВЭ, позволит довести энергетическое разрешение до 1,5%, что улучшит условия для поиска аннигиляционных гамма-линий.

Сравнение параметров основного варианта телескопа (ГАММА-400) и модернизированного (ГАММА-400М) даны в таблице.

Сравнение измененных параметров ГАММА-400 и ГАММА-400М

Параметр	ГАММА-400	ГАММА-400М			
Гамма-телескоп					
Диапазон энергий	30-1000 ГэВ	30-3000 ГэВ			
Геометрический фактор	0,92 м ² ср	1,96 м ² ср			
Угловое разрешение	1-2°	1-2°			
Macca	1200 кг	1700 кг			
Площадь АС	800х800 мм ²	1100x1100 мм ²			
Площадь СВ ВПС	800х800 мм ²	1000x1000 мм ²			
Площадь СН ВПС	600х600 мм ²	700x700 мм ²			
Калориметр (СКМ)					
Площадь калориметра	550х550 мм ²	660х660 мм ²			
Масса калориметра	615 кг	820 кг			
Число модулей	25	36			
Толщина калориметра	18 р.е.д.	20 р.е.д.			
Энергетическое разрешение	2,5%	1,5%			
$(E_{\gamma} = 1 \text{ T} \Rightarrow B)$					
Модуль калориметра					
Площадь модуля	$110\mathrm{x}110$ мм 2	110x110 мм ²			
Длина модуля	370 мм	700 мм			
Масса модуля	17 кг	23 кг			
Толщина модуля	18 р.е.д.	20 р.е.д.			
Число элементов	180	400			
Элемент модуля – свинец + полистирол + бумага 30					
Толщина свинца в элементе	0,55 мм (0,1 р.е.д.)	0,275 мм (0,05 р.е.д.)			

Оценка статистики измерений диффузного гамма-излучения в направлении на центр Галактики (показатель спектра k=2,6)

Энергия, ГэВ	Число отсчетов
	(за год)
30	22252
100	3242
1000	81
2000	27
3000	14

Оценка статистики измерений гамма-излучения некоторых интенсивных дискретных источников (за 100 суток)

Энергия, ГэВ	CRAB PULSAR	GEMINGA PULSAR	VELA PULSAR
	(k=2,19)	(k=1,66)	(k=1,69)
30	7677	21440	49044
100	550	2906	6411
1000	3,5	64	131
2000	0,8	20	41
3000	0,3	10	20

Ожидаемая статистика регистрации фотонов аннигилляционных гамма-линий N_{γ,лин} и фона диффузной компоненты N_{γ,фон} за 1 год наблюдений

(при энергетическом разрешении $\Delta E_{\gamma}/E_{\gamma}=2\%$)

Е _γ , ГэВ	100	200	300	500
N _{ү,лин}	32,4	32,4	32,4	32,4
N _{γ,фон}	18,5	5,7	2,9	1,2
$\sqrt{N_{_{\gamma, \hat{o}\hat{\imath} \acute{\imath}}}}$	4,3	2,4	1,7	1,1
$\frac{N_{\gamma,\ddot{e}\dot{e}\acute{\iota}}-N_{\gamma,\hat{o}\hat{\iota}\acute{\iota}}}{\sqrt{N_{\gamma,\hat{o}\hat{\iota}\acute{\iota}}}}$	3,2	10	17	30

Планируется в дальнейшем обсудить возможности расширения программы измерений, постановки новых научных задач, учитывая возможности космической обсерватории.

Авторы будут благодарны участникам конференции за возможные замечания и предложения к проекту ГАММА-400.